|
Bartoš, L., Bartošová, J., & Starostová, L. (2008). Position of the head is not associated with changes in horse vision. Equine Veterinary Journal, 40(6), 599–601.
Abstract: It has become accepted that the horse cannot see directly in front when the nose is lowered and must therefore rely on the rider. We tested the hypothesis that this conclusion would be correct only if the horse did not adjust the eyeball horizontal axis to changes of the head position. The results of the present study suggest that it is unlikely that horses have limited vision in relation to their head position when driven by the rider, and that the horse maintains the optimal horizontal eyeball position regardless of head position relative to the ground.
|
|
|
Vlajkoviç, S., Nikoliç, V., Nikoliç, A., Milanoviç, S. žA., & Jankoviç, B. D. (1994). Asymmetrical Modulation of Immune Reactivity in Left- and Right-Biased Rats After Ipsilateral Ablation of the Prefrontal, Parietal and Occipital Brain Neocortex. International Journal of Neuroscience, 78(1-2), 123–134.
Abstract: We report here on the lateralized brain immunomodulation in male Wistar rats, a phenomenon related to the rotational bias of animal and the site of cortical lesion. Rats assigned to left- and right-rotators in a cylindrical Plexiglass rotometer were subjected to the ablation of the ipsilateral prefrontal cortex (PFC), parietal cortex (PC) and occipital cortex (OC) and sensitized with bovine serum albumin (BSA) in complete Freund's adjuvant. Intact and sham-lesioned left-biased animals demonstrated increased Arthus and delayed hypersensitivity skin reactions and antibody production to BSA in comparison with corresponding right-biased animals. PFC ablation decreased humoral and cellular immune responses to BSA in left- but increased in right-biased rats. Lesioning of PC decreased humoral immune reactions in left- but increased in right-rotating animals. OC ablation failed to produce immunological abnormalities, These results suggest that immunopotentiation is associated with the left neocortex, and immunosuppression with the right neocortex. The prefrontal cortex appears to be particularly associated with immune reactions.
|
|
|
Wasserman, E. A., Gagliardi, J. L., Cook, B. R., Kirkpatrick-Steger, K., Astley, S. L., & Biederman, I. (1996). The pigeon's recognition of drawings of depth-rotated stimuli. J Exp Psychol Anim Behav Process, 22(2), 205–221.
Abstract: Four experiments used a four-choice discrimination learning paradigm to explore the pigeon's recognition of line drawings of four objects (an airplane, a chair, a desk lamp, and a flashlight) that were rotated in depth. The pigeons reliably generalized discriminative responding to pictorial stimuli over all untrained depth rotations, despite the bird's having been trained at only a single depth orientation. These generalization gradients closely resembled those found in prior research that used other stimulus dimensions. Increasing the number of different vantage points in the training set from one to three broadened the range of generalized testing performance, with wider spacing of the training orientations more effectively broadening generalized responding. Template and geon theories of visual recognition are applied to these empirical results.
|
|