|
Aurich, J., Wulf, M., Ille, N., Erber, R., von Lewinski, M., Palme, R., et al. (2015). Effects of season, age, sex and housing on salivary cortisol concentrations in horses. Domest. Anim. Endocrinol., .
Abstract: Abstract Analysis of salivary cortisol is increasingly used to assess stress responses in horses. Since spontaneous or experimentally induced increases in cortisol concentrations are often relatively small for stress studies proper controls are needed. This requires an understanding of factors affecting salivary cortisol over longer times. In this study, we have analysed salivary cortisol concentration over 6 mo in horses (n = 94) differing in age, sex, reproductive state and housing. Salivary cortisol followed a diurnal rhythm with highest concentrations in the morning and a decrease throughout the day (P < 0.001). This rhythm was disrupted in individual groups on individual days; however, alterations remained within the range of diurnal changes. Comparison between months showed highest cortisol concentrations in December (P < 0.001). Cortisol concentrations increased in breeding stallions during the breeding season (P < 0.001). No differences in salivary cortisol concentrations between non-pregnant mares with and without a corpus luteum existed. In stallions, mean daily salivary cortisol and plasma testosterone concentration were weakly correlated (r = 0.251, P < 0.01). No differences in salivary cortisol between female and male young horses and no consistent differences between horses of different age existed. Group housing and individual stabling did not affect salivary cortisol. In conclusion, salivary cortisol concentrations in horses follow a diurnal rhythm and are increased in active breeding sires. Time of the day and reproductive state of the horses are thus important for experiments that include analysis of cortisol in saliva.
|
|
|
Berger, A., Scheibe, K. - M., Eichhorn, K., Scheibe, A., & Streich, J. (1999). Diurnal and ultradian rhythms of behaviour in a mare group of Przewalski horse (Equus ferus przewalskii), measured through one year under semi-reserve conditions. Appl. Anim. Behav. Sci., 64(1), 1–17.
Abstract: Investigations were conducted on four horses from a group of 12 Przewalski mares raised in different zoos and kept in a 44-ha enclosure under semi-natural conditions. Activity and feeding were continuously measured every second and were saved every 15 min by the storage-telemetry system ETHOSYS, from June 1995 to July 1996. Body mass of the horses was regularly recorded. Daily and monthly mean values, power spectra and DFC (as a measure for stability of rhythms synchronised with circadiurnal period) for activity and feeding were calculated. The general pattern of activity and feeding over the year was closely related to sunrise and sunset. Feeding accounted for 40% of total activity in summer and 62% in spring (all-year average being 52%). The level of activity was lowest in winter; whereas feeding was lowest in summer. The time budget for feeding reflected both feeding conditions and the annual pattern of body condition. Greatest activity occurred during daylight hours. Only on hot summer days, activity at night was higher than during daylight hours. Spectral analysis of activity and feeding in Przewalski horse showed a time pattern which was characterised by 24-h rhythmicity, but also by ultradian components with period lengths between 4.8 and 12 h, i.e., an activity pattern of up to five strong bouts per day. Annual variation in the pattern of power spectra was not high during the year. Results are discussed in connection with horse feeding strategy. Analysing the time structure of long-term and continuously measured activity and feeding could be a useful method to follow the general living conditions, especially the nutritional situation and to detect stressful conditions.
|
|
|
Bottoms, G. D., Roesel, O. F., Rausch, F. D., & Akins, E. L. (1972). Circadian variation in plasma cortisol and corticosterone in pigs and mares. Am J Vet Res, 33(4), 785–790.
|
|
|
Collery, L. (1974). Observations of equine animals under farm and feral conditions. Equine Vet J, 6(4), 170–173.
|
|
|
Dalmau, A., Ferret, A., Chacon, G., & Manteca, X. (2007). Seasonal Changes in Fecal Cortisol Metabolites in Pyrenean Chamois. J Wildl Manag, 71(1), 190–194.
Abstract: We studied seasonal changes in fecal cortisol metabolites (FCM), which have been widely used as indicators of stress, in a population of Pyrenean chamois (Rupicapra pyrenaica pyrenaica) in the Cadí Range of northeastern Spain. We collected fecal samples from 2001 to 2003 in 3 particular locations with different altitudes and male or female presence, and we analyzed them for FCM and fecal nitrogen as an indicator of diet quality. We observed a clear seasonal pattern, with the highest FCM in winter, and we obtained correlations between FCM and monthly mean minimum temperatures and fecal nitrogen. We observed no effects of tourism presence, trophy hunting, or rut season on FCM. Analysis of cortisol metabolites in feces can be a good measure of winter stress in Pyrenean chamois.
|
|
|
Gill, J. (1991). A new method for continuous recording of motor activity in horses. Comp Biochem Physiol A, 99(3), 333–341.
Abstract: 1. The use of an electronic recorder for the horse motor activity was described. 2. Examples of different types of motor activities are given in Figs 1-8. 3. The ultradian pattern of activity in all records was stressed. 4. The possibility of receiving of more physiological informations by this type of apparatus is discussed.
|
|
|
Keay, J. M., Singh, J., Gaunt, M. C., & Kaur, T. (2006). Fecal glucocorticoids and their metabolites as indicators of stress in various mammalian species: a literature review. J Zoo Wildl Med, 37(3), 234–244.
Abstract: Conservation medicine is a discipline in which researchers and conservationists study and respond to the dynamic interplay between animals, humans, and the environment. From a wildlife perspective, animal species are encountering stressors from numerous sources. With the rapidly increasing human population, a corresponding increased demand for food, fuel, and shelter; habitat destruction; and increased competition for natural resources, the health and well-being of wild animal populations is increasingly at risk of disease and endangerment. Scientific data are needed to measure the impact that human encroachment is having on wildlife. Nonbiased biometric data provide a means to measure the amount of stress being imposed on animals from humans, the environment, and other animals. The stress response in animals functions via glucocorticoid metabolism and is regulated by the hypothalamic-pituitary-adrenal axis. Fecal glucocorticoids, in particular, may be an extremely useful biometric test, since sample collection is noninvasive to subjects and, therefore, does not introduce other variables that may alter assay results. For this reason, many researchers and conservationists have begun to use fecal glucocorticoids as a means to measure stress in various animal species. This review article summarizes the literature on many studies in which fecal glucocorticoids and their metabolites have been used to assess stress levels in various mammalian species. Variations between studies are the main focus of this review. Collection methods, storage conditions, shipping procedures, and laboratory techniques utilized by different researchers are discussed.
|
|
|
Kirkpatrick, J. F., Vail, R., Devous, S., Schwend, S., Baker, C. B., & Wiesner, L. (1976). Diurnal variation of plasma testosterone in wild stallions. Biol Reprod, 15(1), 98–101.
|
|
|
Krzak, W. E., Gonyou, H. W., & Lawrence, L. M. (1991). Wood chewing by stabled horses: diurnal pattern and effects of exercise. J. Anim Sci., 69(3), 1053–1058.
Abstract: Nine yearling horses, stabled in individual stalls, were used in a trial to determine the diurnal pattern of wood chewing and the effects of exercise on this behavior. The trial was a Latin square design conducted over three 2-wk periods during which each horse was exposed to each of the three following treatments: 1) no exercise (NE), 2) exercise after the morning feeding (AM), and 3) exercise in the afternoon (PM). Horses were fed a complete pelleted feed in the morning and both pelleted feed and long-stemmed hay in the afternoon. Exercise consisted of 45 min on a mechanical walker followed by 45 min in a paddock with bare soil. Each stall was equipped with two untreated spruce boards during each period for wood chewing. Wood chewing was evaluated by videotaping each horse for 22 h during each period, determining the weight and volume of the boards before and after each period, and by visual appraisal of the boards. Intake of trace mineralized salt was also measured. Wood chewing occurred primarily between 2200 and 1200. All measures of wood chewing were correlated when totals for the entire 6 wk were analyzed. When analysis was performed on 2-wk values, videotape results were not correlated with volume or weight loss of boards. Horses chewed more when on the NE treatment (511 s/d) than when on AM or PM (57 and 136 s/d, respectively; P less than .05). Salt intake tended to be greater for NE than for the other treatments (P less than .10).(ABSTRACT TRUNCATED AT 250 WORDS)
|
|
|
Lees, P., & Tavernor, W. D. (1970). Influence of halothane and catecholamines on heart rate and rhythm in the horse. Br J Pharmacol, 39(1), 149–159.
|
|