|
de Waal, F. B. M., & Luttrell, L. M. (1988). Mechanisms of social reciprocity in three primate species: Symmetrical relationship characteristics or cognition? Ethology and Sociobiology, 9(2–4), 101–118.
Abstract: Agonistic intervention behavior was observed in captive groups of chimpanzees (Pan troglodytes), rhesus monkeys (Macaca mulatta), and stumptail monkeys (M. arctoides). Reciprocity correlations of interventions were determined while removing from the data the effects of several symmetrical relationship characteristics, that is, matrillineal kinship, proximity relations, and same-sex combination. It was considered likely that if significant reciprocity persisted after controlling for these characteristics, the reciprocity was based on cognitive mechanisms. Statistical significance was tested by means of recently developed matrix permutation procedures. All three species exhibited significant reciprocity with regard to beneficial interventions, even after controlling for symmetrical traits. Harmful interventions were, however, reciprocal among chimpanzees only. This species showed a “revenge system”, that is, if A often intervened against B, B did the same to A. In contrast, both macaque species showed significantly inversed reciprocity in their harmful interventions: if A often intervened against B, B rarely intervened against A. Further analysis indicates that the strict hierarchy of macaques prevents them from achieving complete reciprocity. Compared to chimpanzees, macaques rarely intervene against higher ranking group members. The observed contrast can be partially explained on the basis of differences in available space, as indicated by a comparison of indoor and outdoor living conditions for the chimpanzee colony. Yet, even when such spatial factors are taken into account, substantial behavior differences between chimpanzees and macaques remain.
|
|
|
Herbert Gintis, Samuel Bowles, Robert Boyd, & Ernst Fehr. (2003). Explaining altruistic behavior in humans. Evolution and Human Behaviour, 24(3), 153–172.
Abstract: Recent experimental research has revealed forms of human behavior involving interaction among unrelated individuals that have proven difficult to explain in terms of kin or reciprocal altruism. One such trait, strong reciprocity is a predisposition to cooperate with others and to punish those who violate the norms of cooperation, at personal cost, even when it is implausible to expect that these costs will be repaid. We present evidence supporting strong reciprocity as a schema for predicting and understanding altruism in humans. We show that under conditions plausibly characteristic of the early stages of human evolution, a small number of strong reciprocators could invade a population of self-regarding types, and strong reciprocity is an evolutionary stable strategy. Although most of the evidence we report is based on behavioral experiments, the same behaviors are regularly described in everyday life, for example, in wage setting by firms, tax compliance, and cooperation in the protection of local environmental public goods.
|
|
|
Romero, T., & Aureli, F. (2008). Reciprocity of support in coatis (Nasua nasua). Journal of Comparative Psychology, 122(1), 19–25.
Abstract: Primate sociality has received much attention and its complexity has been viewed as a driving force for the evolution of cognitive abilities. Improved analytic techniques have allowed primate researchers to reveal intricate social networks based on the exchange of cooperative acts and services. Although nonprimates are known to show similar behavior (e.g., cooperative hunting, food sharing, coalitions) there seems a consensus that social life is less complex than in primates. Here the authors present the first group-level analysis of reciprocity of social interactions in a social carnivore, the ring-tailed coati (<xh:i xmlns:search=“http://marklogic.com/appservices/search” xmlns=“http://apa.org/pimain” xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance” xmlns:xh=“http://www.w3.org/1999/xhtml”>Nasua nasua</xh:i>). The authors found that support in aggressive conflicts is a common feature in coatis and that this behavior is reciprocally exchanged in a manner seemingly as complex as in primates. Given that reciprocity correlations persisted after controlling for the effect of spatial association and subunit membership, some level of scorekeeping may be involved. Further studies will be needed to confirm our findings and understand the mechanisms underlying such reciprocity, but our results contribute to the body of work that has begun to challenge primate supremacy in social complexity and cognition. (PsycINFO Database Record (c) 2012 APA, all rights reserved)
|
|
|
Schino, G., & Aureli, F. (2016). Reciprocity in group-living animals: partner control versus partner choice. Biol Rev, 92(2), 665–672.
Abstract: ABSTRACT Reciprocity is probably the most debated of the evolutionary explanations for cooperation. Part of the confusion surrounding this debate stems from a failure to note that two different processes can result in reciprocity: partner control and partner choice. We suggest that the common observation that group-living animals direct their cooperative behaviours preferentially to those individuals from which they receive most cooperation is to be interpreted as the result of the sum of the two separate processes of partner control and partner choice. We review evidence that partner choice is the prevalent process in primates and propose explanations for this pattern. We make predictions that highlight the need for studies that separate the effects of partner control and partner choice in a broader variety of group-living taxa.
|
|
|
Schino, G., di Sorrentino, E. P., & Tiddi, B. (2007). Grooming and coalitions in Japanese macaques (<em>Macaca fuscata</em>): Partner choice and the time frame reciprocation. Journal of Comparative Psychology, 121(2), 181–188.
Abstract: Evidence of a reciprocal exchange of grooming and agonistic support in primates is mixed. In this study, the authors analyzed a large database of grooming and coalitions in captive female Japanese macaques (Macaca fuscata) to investigate their within-group distribution and temporal relations. Macaques groomed preferentially those individuals that groomed them most and supported preferentially those individuals that supported them most. They also supported preferentially those individuals that groomed them most and groomed preferentially those individuals that supported them most. These results were not explained by covariation of grooming and support with third variables such as kinship, rank, or time spent in proximity. However, receiving grooming did not increase the short-term probability of supporting a partner, and being supported did not increase the short-term probability of grooming a partner. The proximate mechanisms underlying the exchange of services were discussed in relation to the time frame of the behavioral choices made by the monkeys. (PsycINFO Database Record (c) 2012 APA, all rights reserved)
|
|