|
Cheung, C., Akiyama, T. E., Ward, J. M., Nicol, C. J., Feigenbaum, L., Vinson, C., et al. (2004). Diminished hepatocellular proliferation in mice humanized for the nuclear receptor peroxisome proliferator-activated receptor alpha. Cancer Res, 64(11), 3849–3854.
Abstract: Lipid-lowering fibrate drugs function as agonists for the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha). Sustained activation of PPARalpha leads to the development of liver tumors in rats and mice. However, humans appear to be resistant to the induction of peroxisome proliferation and the development of liver cancer by fibrate drugs. The molecular basis of this species difference is not known. To examine the mechanism determining species differences in peroxisome proliferator response between mice and humans, a PPARalpha-humanized mouse line was generated in which the human PPARalpha was expressed in liver under control of the tetracycline responsive regulatory system. The PPARalpha-humanized and wild-type mice responded to treatment with the potent PPARalpha ligand Wy-14643 as revealed by induction of genes encoding peroxisomal and mitochondrial fatty acid metabolizing enzymes and resultant decrease of serum triglycerides. However, surprisingly, only the wild-type mice and not the PPARalpha-humanized mice exhibited hepatocellular proliferation as revealed by elevation of cell cycle control genes, increased incorporation of 5-bromo-2'-deoxyuridine into hepatocyte nuclei, and hepatomegaly. These studies establish that following ligand activation, the PPARalpha-mediated pathways controlling lipid metabolism are independent from those controlling the cell proliferation pathways. These findings also suggest that structural differences between human and mouse PPARalpha are responsible for the differential susceptibility to the development of hepatocarcinomas observed after treatment with fibrates. The PPARalpha-humanized mice should serve as models for use in drug development and human risk assessment and to determine the mechanism of hepatocarcinogenesis of peroxisome proliferators.
|
|
|
Nicol, C. J., Yoon, M., Ward, J. M., Yamashita, M., Fukamachi, K., Peters, J. M., et al. (2004). PPARgamma influences susceptibility to DMBA-induced mammary, ovarian and skin carcinogenesis. Carcinogenesis, 25(9), 1747–1755.
Abstract: Peroxisome proliferator-activated receptor gamma (PPARgamma), a member of the nuclear receptor superfamily, plays a role in adipocyte differentiation, type II diabetes, macrophage response to inflammation and is suggested to influence carcinogen-induced colon cancer. Studies done in vitro and in vivo also revealed that PPARgamma ligands might promote differentiation and/or regression of mammary tumors. To directly evaluate the role of PPARgamma in mammary carcinogenesis, PPARgamma wild-type (+/+) or heterozygous (+/-) mice were administered 1 mg 7,12-dimethylbenz[a]anthracene (DMBA) by gavage once a week for 6 weeks and followed for a total of 25 weeks. Compared with congenic PPARgamma(+/+) littermate controls, PPARgamma(+/-) mice had early evidence for increased susceptibility to DMBA-mediated carcinogenesis based on a 1.6-fold increase in the percentage of mice with skin papillomas, as well as a 1.7-fold increase in the numbers of skin papillomas per mouse (P < 0.05). Similarly, PPARgamma(+/-) mice also had a 1.5-fold decreased survival rate (P = 0.059), and a 1.7-fold increased incidence of total tumors per mouse (P < 0.01). Moreover, PPARgamma(+/-) mice had an almost 3-fold increase in mammary adenocarcinomas (P < 0.05), an over 3-fold increase in ovarian granulosa cell carcinomas (P < 0.05), an over 3-fold increase in malignant tumors (P < 0.02) and a 4.6-fold increase in metastatic incidence. These results are the first to demonstrate an increased susceptibility in vivo of PPARgamma haploinsufficiency to DMBA-mediated carcinogenesis and suggest that PPARgamma may act as a tumor modifier of skin, ovarian and breast cancers. The data also support evidence suggesting a beneficial role for PPARgamma-specific ligands in the chemoprevention of mammary, ovarian and skin carcinogenesis.
|
|