|
Hausberger, M., & Muller, C. (2002). A brief note on some possible factors involved in the reactions of horses to humans. Appl. Anim. Behav. Sci., 76(4), 339–344.
Abstract: In order to investigate relationships of adult horses to humans, we developed a simple evaluation test and scores based on observations. The first reactions of 224 adult horses to the presence of an experimenter were observed and scored. All these horses belonged to the same riding school, had the same general housing conditions and were all geldings. The evaluation was based on the horse's posture. Individual differences that could be related to some extent to the breed but also to human factors emerged clearly. French saddlebreds showed more often friendly behaviour than Angloarabs, whereas thoroughbreds were more indifferent. Clear variations occurred between groups of horses that depended on different caretakers. In this school, one caretaker is responsible for the whole daily management of a group of horses and is probably a very important factor in their well-being. The effects of this daily relation to a human seemed to be involved in the reactions to a strange person. Further studies are required to investigate what, in practice, may be determinant.
|
|
|
Jankunis, E. S., & Whishaw, I. Q. (2013). Sucrose Bobs and Quinine Gapes: Horse (Equus caballus) responses to taste support phylogenetic similarity in taste reactivity. Behavioural Brain Research, 256, 284–290.
Abstract: Evidence suggests that behavioural affective reactions to sweet and bitter substances are homologous in humans, nonhuman primates, and rodents. The sweet taste of sucrose elicits facial responses that include rhythmic tongue protrusions whereas the bitter taste of quinine elicits facial responses that include gapes, featuring an opening of the mouth and protrusion of the tongue. The present study using the horse (Equus caballus) was undertaken for three reasons: (1) there is debate about the presence of a sweet receptor gene in the horse, (2) there is a need to expand the examination of facial reactions to taste in lineages other than the closely related lineages of rodents and primates, and (3) the horse provides an opportunity to test the hypothesis that some social signals derive from movements related to taste reaction. The horses were given oral infusions of either sucrose or quinine and their behaviour was examined using frame-by-frame video analysis. Control groups were exposed received water or syringe insertion only. Amongst the many responses made to the infusions, the distinctive response to sucrose was a bob coupled with a slight tongue protrusion and forward movement of the ears; the distinctive response to quinine was a head extension and mouth gape accompanied by a large tongue protrusion and backward movement of the ears. Sucrose Bobs and Quinine Gapes are discussed with respect to: (1) the relevance of facial reactions to both sucrose and quinine to taste receptors in horses, (2) the similarity of features of taste expression in horses to those documented in rodents and primates, and (3) the dissimilarity between facial reactions to taste and other social signals displayed by horses.
|
|
|
Yamada, T., Rojanasuphot, S., Takagi, M., Wungkobkiat, S., & Hirota, T. (1971). Studies on an epidemic of Japanese encephalitis in the northern region of Thailand in 1969 and 1970. Biken J, 14(3), 267–296.
|
|
|
Yang, S. (2000). Melioidosis research in China. Acta Trop, 77(2), 157–165.
Abstract: Research on melioidosis and its pathogen has been ongoing in China for more than two decades. It has been demonstrated that the natural foci are located predominantly in Hainan, Guangdong and Guangxi province, where there is a good correlation between soil isolation and the serum prevalence of antibodies to Burkholderia pseudomallei. The cases of melioidosis reported up to now are concentrated in the Hainan and Zhanjiang peninsula. Investigations on serotype, virulence, ecology, antibiotic susceptibility, whole cell analysis by gas chromatography, and genetics have led to a new understanding of the pathology of the disease. Immunological cross reactions between Burkholderia mallei and B. pseudomallei and the difference between melioidosis and glanders in horses is discussed.
|
|