|
Hayashi, M., & Matsuzawa, T. (2003). Cognitive development in object manipulation by infant chimpanzees. Anim. Cogn., 6(4), 225–233.
Abstract: This study focuses on the development of spontaneous object manipulation in three infant chimpanzees during their first 2 years of life. The three infants were raised by their biological mothers who lived among a group of chimpanzees. A human tester conducted a series of cognitive tests in a triadic situation where mothers collaborated with the researcher during the testing of the infants. Four tasks were presented, taken from normative studies of cognitive development of Japanese infants: inserting objects into corresponding holes in a box, seriating nesting cups, inserting variously shaped objects into corresponding holes in a template, and stacking up wooden blocks. The mothers had already acquired skills to perform these manipulation tasks. The infants were free to observe the mothers' manipulative behavior from immediately after birth. We focused on object-object combinations that were made spontaneously by the infant chimpanzees, without providing food reinforcement for any specific behavior that the infants performed. The three main findings can be summarized as follows. First, there was precocious appearance of object-object combination in infant chimpanzees: the age of onset (8-11 months) was comparable to that in humans (around 10 months old). Second, object-object combinations in chimpanzees remained at a low frequency between 11 and 16 months, then increased dramatically at the age of approximately 1.5 years. At the same time, the accuracy of these object-object combinations also increased. Third, chimpanzee infants showed inserting behavior frequently and from an early age but they did not exhibit stacking behavior during their first 2 years of life, in clear contrast to human data.
|
|
|
Lagarde, J., Kelso, J. A. S., Peham, C., & Licka, T. (2005). Coordination dynamics of the horse-rider system. J Mot Behav, 37(6), 418–424.
Abstract: The authors studied the interaction between rider and horse by measuring their ensemble motions in a trot sequence, comparing 1 expert and 1 novice rider. Whereas the novice's movements displayed transient departures from phase synchrony, the expert's motions were continuously phase-matched with those of the horse. The tight ensemble synchrony between the expert and the horse was accompanied by an increase in the temporal regularity of the oscillations of the trunk of the horse. Observed differences between expert and novice riders indicated that phase synchronization is by no means perfect but requires extended practice. Points of contact between horse and rider may haptically convey effective communication between them.
|
|
|
Poti, P. (2005). Chimpanzees' constructional praxis (Pan paniscus, P. troglodytes). Primates, 46(2), 103–113.
Abstract: This study investigated chimpanzees' spontaneous spatial constructions with objects and especially their ability to repeat inter-object spatial relations, which is basic to understanding spatial relations at a higher level than perception or recognition. Subjects were six chimpanzees-four chimpanzees and two bonobos-aged 6-21 years, all raised in a human environment from an early age. Only minor species differences, but considerable individual differences were found. The effect of different object samples was assessed through a comparison with a previous study. A common overall chimpanzee pattern was also found. Chimpanzees repeated different types of inter-object spatial relations such as insertion (I), or vertical (V), or next-to (H) relations. However chimpanzees repeated I or V relations with more advanced procedures than when repeating H relations. Moreover, chimpanzees never repeated combined HV relations. Compared with children, chimpanzees showed a specific difficulty in repeating H relations. Repeating H relations is crucial for representing and understanding multiple reciprocal spatial relations between detached elements and for coordinating independent positions in space. Therefore, the chimpanzees' difficulty indicates a fundamental difference in constructive space in comparison to humans. The findings are discussed in relation to issues of spatial cognition and tool use.
|
|