|
Akins, C. K., & Zentall, T. R. (1996). Imitative learning in male Japanese quail (Coturnix japonica) using the two-action method. J Comp Psychol, 110(3), 316–320.
Abstract: The study of imitative learning in animals has suffered from the presence of a number of confounding motivational and attentional factors (e.g., social facilitation and stimulus enhancement). The two-action method avoids these problems by exposing observers to demonstrators performing a response (e.g., operating a treadle) using 1 of 2 distinctive topographies (e.g., by pecking or by stepping). Japanese quail (Coturnix japonica) observers exposed to conspecific demonstrators showed a high correlation between the topography of the response they observed and the response they performed. These data provide strong evidence for the existence of true imitative learning in an active, precocious bird under conditions that control for alternative accounts.
|
|
|
Allen, C. (1998). Assessing animal cognition: ethological and philosophical perspectives. J. Anim Sci., 76(1), 42–47.
Abstract: Developments in the scientific and philosophical study of animal cognition and mentality are of great importance to animal scientists who face continued public scrutiny of the treatment of animals in research and agriculture. Because beliefs about animal minds, animal cognition, and animal consciousness underlie many people's views about the ethical treatment of nonhuman animals, it has become increasingly difficult for animal scientists to avoid these issues. Animal scientists may learn from ethologists who study animal cognition and mentality from an evolutionary and comparative perspective and who are at the forefront of the development of naturalistic and laboratory techniques of observation and experimentation that are capable of revealing the cognitive and mental properties of nonhuman animals. Despite growing acceptance of the ethological study of animal cognition, there are critics who dispute the scientific validity of the field, especially when the topic is animal consciousness. Here, a proper understanding of developments in the philosophy of mind and the philosophy of science can help to place cognitive studies on a firm methodological and philosophical foundation. Ultimately, this is an interdisciplinary task, involving scientists and philosophers. Animal scientists are well-positioned to contribute to the study of animal cognition because they typically have access to a large pool of potential research subjects whose habitats are more controlled than in most field studies while being more natural than most laboratory psychology experiments. Despite some formidable questions remaining for analysis, the prospects for progress in assessing animal cognition are bright.
|
|
|
Alverdes, F. (1925). Tiersoziologie. Leipzig: C. L. Hirschfeld,.
Abstract: Forschungen zur Völkerpsychologie und Soziologie ; 1
|
|
|
Anderson, J. R. (1995). Self-recognition in dolphins: credible cetaceans; compromised criteria, controls, and conclusions. Conscious Cogn, 4(2), 239–243.
|
|
|
Anderson, J. R., Kuroshima, H., Kuwahata, H., & Fujita, K. (2004). Do squirrel monkeys (Saimiri sciureus) and capuchin monkeys (Cebus apella) predict that looking leads to touching? Anim. Cogn., 7(3), 185–192.
Abstract: Squirrel monkeys (Saimiri sciureus) and capuchin monkeys (Cebus apella) were tested using an expectancy violation procedure to assess whether they use an actor's gaze direction, signaled by congruent head and eye orientation, to predict subsequent behavior. The monkeys visually habituated to a repeated sequence in which the actor (a familiar human or a puppet) looked at an object and then picked it up, but they did not react strongly when the actor looked at an object but then picked up another object. Capuchin monkeys' responses in the puppet condition were slightly more suggestive of expectancy. There was no differential responding to congruent versus incongruent look-touch sequences when familiarization trials were omitted. The weak findings contrast with a strongly positive result previously reported for tamarin monkeys. Additional evidence is required before concluding that behavior prediction based on gaze cues typifies primates; other approaches for studying how they process attention cues are indicated.
|
|
|
Arluke, A. (2004). The use of dogs in medical and veterinary training: understanding and approaching student uneasiness. J Appl Anim Welf Sci, 7(3), 197–204.
|
|
|
Aronson, L. (1998). Animal behavior case of the month. Aggression directed toward other horses. J Am Vet Med Assoc, 213(3), 358–359.
|
|
|
Aureli, F., & de Waal, F. B. (1997). Inhibition of social behavior in chimpanzees under high-density conditions. Am. J. Primatol., 41(3), 213–228.
Abstract: This is the first study to investigate the short-term effects of high population density on captive chimpanzees (Pan troglodytes). Subjects of the study were 45 chimpanzees living in five different groups at the Yerkes Regional Primate Research Center. The groups were observed under two conditions: 1) when they had access to both the indoor and outdoor sections of their enclosures; 2) during cold days when they were locked into the indoor runs, which reduced the available space by more than half. Under the high-density condition, allogrooming and submissive greetings decreased, but juvenile play increased. Remarkably, the rate of various forms of agonistic behavior, such as aggression, bluff charge, bluff display, and hooting, occurred less frequently under the high-density condition. This general decrease in adult social activity, including agonistic behavior, can be interpreted as an inhibition strategy to reduce opportunities for conflict when interindividual distances are reduced. This strategy is probably effective only in the short run, however. Behavioral indicators of anxiety, such as rough scratching and yawning, showed elevated rates, suggesting increased social tension under the high-density condition.
|
|
|
Aust, U., & Huber, L. (2006). Picture-object recognition in pigeons: evidence of representational insight in a visual categorization task using a complementary information procedure. J Exp Psychol Anim Behav Process, 32(2), 190–195.
Abstract: Success in tasks requiring categorization of pictorial stimuli does not prove that a subject understands what the pictures stand for. The ability to achieve representational insight is by no means a trivial one because it exceeds mere detection of 2-D features present in both the pictorial images and their referents. So far, evidence for such an ability in nonhuman species is weak and inconclusive. Here, the authors report evidence of representational insight in pigeons. After being trained on pictures of incomplete human figures, the birds responded significantly more to pictures of the previously missing parts than to nonrepresentative stimuli, which demonstrates that they actually recognized the pictures' representational content.
|
|
|
Bard, K. A. (2007). Neonatal imitation in chimpanzees (Pan troglodytes) tested with two paradigms. Anim. Cogn., 10(2), 233–242.
Abstract: Primate species differ in their imitative performance, perhaps reflecting differences in imitative capacity. The developmentally earliest form of imitation in humans, neonatal imitation, occurs in early interactions with social partners, and may be a more accurate index of innate capacity than imitation of actions on objects, which requires more cognitive ability. This study assessed imitative capacity in five neonatal chimpanzees, within a narrow age range (7-15 days of age), by testing responses to facial and vocal actions with two different test paradigms (structured and communicative). Imitation of mouth opening was found in both paradigms. In the communicative paradigm, significant agreement was found between infant actions and demonstrations. Additionally, chimpanzees matched the sequence of three actions of the TC model, but only on the second demonstration. Newborn chimpanzees matched more modeled actions in the communicative test than in the structured paradigm. These performances of chimpanzees, at birth, are in agreement with the literature, supporting a conclusion that imitative capacity is not unique to the human species. Developmental histories must be more fully considered in the cross-species study of imitation, as there is a greater degree of innate imitative capacity than previously known. Socialization practices interact with innate and developing competencies to determine the outcome of imitation tests later in life.
|
|