|
Blaisdell, A. P., & Cook, R. G. (2005). Integration of spatial maps in pigeons. Anim. Cogn., 8(1), 7–16.
Abstract: The integration of spatial maps in pigeons was investigated using a spatial analog to sensory preconditioning. The pigeons were tested in an open-field arena in which they had to locate hidden food among a 4x4 grid of gravel-filled cups. In phase 1, the pigeons were exposed to a consistent spatial relationship (vector) between landmark L (a red L-shaped block of wood), landmark T (a blue T-shaped block of wood) and the hidden food goal. In phase 2, the pigeons were then exposed to landmark T with a different spatial vector to the hidden food goal. Following phase 2, pigeons were tested with trials on which they were presented with only landmark L to examine the potential integration of the phase 1 and 2 vectors via their shared common elements. When these test trials were preceded by phase 1 and phase 2 reminder trials, pigeons searched for the goal most often at a location consistent with their integration of the L-->T phase 1 and T-->phase 2 goal vectors. This result indicates that integration of spatial vectors acquired during phases 1 and 2 allowed the pigeons to compute a novel L-->goal vector. This suggests that spatial maps may be enlarged by successively integrating additional spatial information through the linkage of common elements.
|
|
|
Dunbar, R. I. M., McAdam, M. R., & O'connell, S. (2005). Mental rehearsal in great apes (Pan troglodytes and Pongo pygmaeus) and children. Behav. Process., 69(3), 323–330.
Abstract: The ability to rehearse possible future courses of action in the mind is an important feature of advanced social cognition in humans, and the “social brain” hypothesis implies that it might also be a feature of primate social cognition. We tested two chimpanzees, six orangutans and 63 children aged 3-7 years on a set of four puzzle boxes, half of which were presented with an opportunity to observe the box before being allowed to open it (“prior view”), the others being given without an opportunity to examine the boxes before handling them (“no prior view”). When learning effects are partialled out, puzzle boxes in the “prior view” condition were opened significantly faster than boxes given in the “no prior view” condition by the children, but not by either of the great apes. The three species differ significantly in the speed with which they opened boxes in the “no prior view” condition. The three species' performance on this task was a function of relative frontal lobe volume, suggesting that it may be possible to identify quantitative neuropsychological differences between species.
|
|
|
Hirata, S., & Celli, M. L. (2003). Role of mothers in the acquisition of tool-use behaviours by captive infant chimpanzees. Anim. Cogn., 6(4), 235–244.
Abstract: This article explores the maternal role in the acquisition of tool-use behaviours by infant chimpanzees ( Pan troglodytes). A honey-fishing task, simulating ant/termite fishing found in the wild, was introduced to three dyads of experienced mother and naive infant chimpanzees. Four fishing sites and eight sets of 20 objects to be used as tools, not all appropriate, were available. Two of the mothers constantly performed the task, using primarily two kinds of tools; the three infants observed them. The infants, regardless of the amount of time spent observing, successfully performed the task around the age of 20-22 months, which is earlier than has been recorded in the wild. Two of the infants used the same types of tools that the adults predominantly used, suggesting that tool selectivity is transmitted. The results also show that adults are tolerant of infants, even if unrelated; infants were sometimes permitted to lick the tools, or were given the tools, usually without honey, as well as permitted to observe the adult performances closely.
|
|
|
Lea, S. E. G., Goto, K., Osthaus, B., & Ryan, C. M. E. (2006). The logic of the stimulus. Anim. Cogn., 9(4), 247–256.
Abstract: This paper examines the contribution of stimulus processing to animal logics. In the classic functionalist S-O-R view of learning (and cognition), stimuli provide the raw material to which the organism applies its cognitive processes-its logic, which may be taxon-specific. Stimuli may contribute to the logic of the organism's response, and may do so in taxon-specific ways. Firstly, any non-trivial stimulus has an internal organization that may constrain or bias the way that the organism addresses it; since stimuli can only be defined relative to the organism's perceptual apparatus, and this apparatus is taxon-specific, such constraints or biases will often be taxon-specific. Secondly, the representation of a stimulus that the perceptual system builds, and the analysis it makes of this representation, may provide a model for the synthesis and analysis done at a more cognitive level. Such a model is plausible for evolutionary reasons: perceptual analysis was probably perfected before cognitive analysis in the evolutionary history of the vertebrates. Like stimulus-driven analysis, such perceptually modelled cognition may be taxon-specific because of the taxon-specificity of the perceptual apparatus. However, it may also be the case that different taxa are able to free themselves from the stimulus logic, and therefore apply a more abstract logic, to different extents. This thesis is defended with reference to two examples of cases where animals' cognitive logic seems to be isomorphic with perceptual logic, specifically in the case of pigeons' attention to global and local information in visual stimuli, and dogs' failure to comprehend means-end relationships in string-pulling tasks.
|
|
|
Tebbich, S., Seed, A. M., Emery, N. J., & Clayton, N. S. (2007). Non-tool-using rooks, Corvus frugilegus, solve the trap-tube problem. Anim. Cogn., 10(2), 225–231.
Abstract: The trap-tube problem is used to assess whether an individual is able to foresee the outcome of its actions. To solve the task, an animal must use a tool to push a piece of food out of a tube, which has a trap along its length. An animal may learn to avoid the trap through a rule based on associative processes, e.g. using the distance of trap or food as a cue, or by understanding relations between cause and effect. This task has been used to test physical cognition in a number of tool-using species, but never a non-tool-user. We developed an experimental design that enabled us to test non-tool-using rooks, Corvus frugilegus. Our modification of the task removed the cognitive requirements of active tool use but still allowed us to test whether rooks can solve the trap-tube problem, and if so how. Additionally, we developed two new control tasks to determine whether rooks were able to transfer knowledge to similar, but novel problems, thus revealing more about the mechanisms involved in solving the task. We found that three out of seven rooks solved the modified trap-tube problem task, showing that the ability to solve the trap-tube problem is not restricted to tool-using animals. We found no evidence that the birds solved the task using an understanding of its causal properties, given that none of the birds passed the novel transfer tasks.
|
|
|
Whiten, A. (1998). Imitation of the sequential structure of actions by chimpanzees (Pan troglodytes). J Comp Psychol, 112(3), 270–281.
Abstract: Imitation was studied experimentally by allowing chimpanzees (Pan troglodytes) to observe alternative patterns of actions for opening a specially designed “artificial fruit.” Like problematic foods primates deal with naturally, with the test fruit several defenses had to be removed to gain access to an edible core, but the sequential order and method of defense removal could be systematically varied. Each subject repeatedly observed 1 of 2 alternative techniques for removing each defense and 1 of 2 alternative sequential patterns of defense removal. Imitation of sequential organization emerged after repeated cycles of demonstration and attempts at opening the fruit. Imitation in chimpanzees may thus have some power to produce cultural convergence, counter to the supposition that individual learning processes corrupt copied actions. Imitation of sequential organization was accompanied by imitation of some aspects of the techniques that made up the sequence.
|
|