|
Ahrendt, L. P., Labouriau, R., Malmkvist, J., Nicol, C. J., & Christensen, J. W. (2015). Development of a standard test to assess negative reinforcement learning in horses. Appl. Anim. Behav. Sci., 169, 38–42.
Abstract: Most horses are trained by negative reinforcement. Currently, however, no standardised test for evaluating horses' negative reinforcement learning ability is available. The aim of this study was to develop an objective test to investigate negative reinforcement learning in horses. Twenty-four Icelandic horses (3 years old) were included in this study. The horses were tested in a pressure-release task on three separate days with 10, 7 and 5 trials on each side, respectively. Each trial consisted of pressure being applied on the hindquarter with an algometer. The force of the pressure was increased until the horse moved laterally away from the point of pressure. There was a significant decrease in required force over trials on the first test day (P<0.001), but not the second and third day. The intercepts on days 2 and 3 differed significantly from day 1 (P<0.001), but not each other. Significantly stronger force was required on the right side compared to the left (P<0.001), but there was no difference between first and second side tested (P=0.56). Individual performance was evaluated by median-force and the change in force over trials on the first test day. These two measures may explain different characteristics of negative reinforcement learning. In conclusion, this study presents a novel, standardised test for evaluating negative reinforcement learning ability in horses.
|
|
|
Belock, B., Kaiser, L. J., Lavagnino, M., & Clayton, H. M. (2012). Comparison of pressure distribution under a conventional saddle and a treeless saddle at sitting trot. The Veterinary Journal, 193(1), 87–91.
Abstract: It can be a challenge to find a conventional saddle that is a good fit for both horse and rider. An increasing number of riders are purchasing treeless saddles because they are thought to fit a wider range of equine back shapes, but there is only limited research to support this theory. The objective of this study was to compare the total force and pressure distribution patterns on the horse’s back with conventional and treeless saddles. The experimental hypotheses were that the conventional saddle would distribute the force over a larger area with lower mean and maximal pressures than the treeless saddle. Eight horses were ridden by a single rider at sitting trot with conventional and treeless saddles. An electronic pressure mat measured total force, area of saddle contact, maximal pressure and area with mean pressure >11 kPa for 10 strides with each saddle. Univariate ANOVA (P < 0.05) was used to detect differences between saddles. Compared with the treeless saddle, the conventional saddle distributed the rider’s bodyweight over a larger area, had lower mean and maximal pressures and fewer sensors recording mean pressure >11 kPa. These findings suggested that the saddle tree was effective in distributing the weight of the saddle and rider over a larger area and in avoiding localized areas of force concentration.
|
|
|
Broekhuis, F., Madsen, E. K., & Klaassen, B. (2019). Predators and pastoralists: how anthropogenic pressures inside wildlife areas influence carnivore space use and movement behaviour. Anim Conserv, .
Abstract: Abstract Across the globe, wildlife populations and their behaviours are negatively impacted by people. Protected areas are believed to be an antidote to increasing human pressures but even they are not immune to the impact of anthropogenic activities. Areas that have been set aside for the protection of wildlife therefore warrant more attention when investigating the impact of anthropogenic pressures on wildlife. We use cheetahs Acinonyx jubatus as a case study to explore how a large carnivore responds to anthropogenic pressures inside wildlife areas. Using GPS-collar data we investigate cheetah space use, both when moving and stationary, and movement parameters (speed and turn angles) in relation to human disturbance, distance to human settlement, livestock abundance and livestock site use inside wildlife areas. Space use was negatively influenced by human disturbance, resulting in habitat loss and fragmentation and potentially reducing landscape permeability between neighbouring wildlife areas. Cheetahs were also less likely to stop in areas where livestock numbers were high, but more likely to stop in areas that were frequently used by livestock. The latter could reflect that cheetahs are attracted to livestock however, cheetahs in the study area rarely predated on livestock. It is therefore more likely that areas that are frequently used by livestock attract wild herbivores, which in turn could influence cheetah space use. We did not find any effects of people and livestock on cheetahs? speed and turn angles which might be related to the resolution of the data. We found that cheetahs are sensitive to human pressures and we believe that they could be an indicator species for other large carnivores facing similar challenges. We suggest that further research is needed to determine the levels of anthropogenic pressures needed to maintain ecological integrity, especially inside wildlife areas.
|
|
|
Carroll, G. L., Matthews, N. S., Hartsfield, S. M., Slater, M. R., Champney, T. H., & Erickson, S. W. (1997). The effect of detomidine and its antagonism with tolazoline on stress-related hormones, metabolites, physiologic responses, and behavior in awake ponies. Vet Surg, 26(1), 69–77.
Abstract: Six ponies were used to investigate the effect of tolazoline antagonism of detomidine on physiological responses, behavior, epinephrine, norepinephrine, cortisol, glucose, and free fatty acids in awake ponies. Each pony had a catheter inserted into a jugular vein 1 hour before beginning the study. Awake ponies were administered detomidine (0.04 mg/kg intravenously [i.v.]) followed 20 minutes later by either tolazoline (4.0 mg/kg i.v.) or saline. Blood samples were drawn from the catheter 5 minutes before detomidine administration (baseline), 5 minutes after detomidine administration, 20 minutes before detomidine administration which was immediately before the administration of tolazoline or saline (time [T] = 0), and at 5, 30, and 60 minutes after injections of tolazoline or saline (T = 5, 30, and 60 minutes, respectively). Compared with heart rate at T = 0, tolazoline antagonism increased heart rate 45% at 5 minutes. There was no difference in heart rate between treatments at 30 minutes. Blood pressure remained stable after tolazoline, while it decreased over time after saline. Compared with concentrations at T = 0, tolazoline antagonism of detomidine in awake ponies resulted in a 55% increase in cortisol at 30 minutes and a 52% increase in glucose at 5 minutes. The change in free fatty acids was different for tolazoline and saline over time. Free fatty acids decreased after detomidine administration. Free fatty acids did not change after saline administration. After tolazoline administration, free fatty acids increased transiently. Tolazoline tended to decrease sedation and analgesia at 15 and 60 minutes postantagonism. Antagonism of detomidine-induced physiological and behavioral effects with tolazoline in awake ponies that were not experiencing pain appears to precipitate a stress response as measured by cortisol, glucose, and free fatty acids. If antagonism of an alpha-agonist is contemplated, the potential effect on hormones and metabolites should be considered.
|
|
|
Colahan, P., Lindsey, E., & Nunier, C. (1993). Determination of the center of pressure of the hoofs of the forelimbs of horses standing on a flat level surface. Acta Anat (Basel), 146(2-3), 175–178.
Abstract: The pressure exerted on a flat level surface by recently trimmed, unshod hoofs of the front limbs of 23 sound, adult horses was measured using pressure-sensitive film and a specially built cassette. The horses were tranquilized and stood with one foot on the 2.9-cm-thick cassette and the other on a block of equal height. The hoofs were observed for motion during the measurement, and the developed film was examined for improper alignment of the film or slipping of the hoof. The center of pressure was located using the method of weighted proportions of Barrey. This static measurement system with a long measurement time and the number of measurements reduced the influence of variables inherent in the horses' behavior and the measuring system. The calculated point was recorded as falling medial to, lateral to or on a line bisecting the central sulcus of the frog. In the dorsal to palmar orientation the point was classified with reference to a line drawn halfway between the most dorsal and the most palmar mark on the film. Forty-six percent of the calculated centers of pressure were located in the medial heel area. Binomial analysis for large samples indicates that this was a significant variation from a random distribution. Seventy-six percent of the centers were located in or on the borders of the medial heel.
|
|
|
de Cocq, P., van Weeren, P. R., & Back, W. (2006). Saddle pressure measuring: Validity, reliability and power to discriminate between different saddle-fits. The Veterinary Journal, 172(2), 265–273.
Abstract: Saddle-fit is recognised as an important factor in the pathogenesis of back problems in horses and is empirically being evaluated by pressure measurements in clinical practice, although not much is known about the validity, reliability and usability of these devices in the equine field. This study was conducted to assess critically a pressure measurement system marketed for evaluating saddle fit. Validity was tested by calculating the correlation coefficient between total measured pressure and the weight of 28 different riders. Reliability and discriminative power with respect to different saddle fitting methods were evaluated in a highly standardised, paired measurement set-up in which saddle-fit was quantified by air-pressure values inside the panels of the saddle. Total pressures under the saddle correlated well with riders’ weight. A large increase in over-day sensor variation was found. Within trial intra-class correlation coefficients (ICCs) were excellent, but the between trial ICCs varied from poor to excellent and the variation in total pressure was high. In saddles in which the fit was adjusted to individual asymmetries of the horse, the pressure measurement device was able to detect correctly air-pressure differences between the two panels in the back area of the saddle, but not in the front area. The device yielded valid results, but was only reliable in highly standardised conditions. The results question the indiscriminate use of current saddle pressure measurement devices for the quantitative assessment of saddle-fit under practical conditions and suggest that further technical improvement may be necessary.
|
|
|
Fruehwirth, B., Peham, C., Scheidl, M., & Schobesberger, H. (2004). Evaluation of pressure distribution under an English saddle at walk, trot and canter. Equine Vet J, 36(8), 754–757.
Abstract: REASONS FOR PERFORMING STUDY: Basic information about the influence of a rider on the equine back is currently lacking. HYPOTHESIS: That pressure distribution under a saddle is different between the walk, trot and canter. METHODS: Twelve horses without clinical signs of back pain were ridden. At least 6 motion cycles at walk, trot and canter were measured kinematically. Using a saddle pad, the pressure distribution was recorded. The maximum overall force (MOF) and centre of pressure (COP) were calculated. The range of back movement was determined from a marker placed on the withers. RESULTS: MOF and COP showed a consistent time pattern in each gait. MOF was 12.1 +/- 1.2 and 243 +/- 4.6 N/kg at walk and trot, respectively, in the ridden horse. In the unridden horse MOF was 172.7 +/- 11.8 N (walk) and 302.4 +/- 33.9 N (trot). At ridden canter, MOF was 27.2 +/- 4.4 N/kg. The range of motion of the back of the ridden horse was significantly lower compared to the unridden, saddled horse. CONCLUSIONS AND POTENTIAL RELEVANCE: Analyses may help quantitative and objective evaluation of the interaction between rider and horse as mediated through the saddle. The information presented is therefore of importance to riders, saddlers and equine clinicians. With the technique used in this study, style, skill and training level of different riders can be quantified, which would give the opportunity to detect potentially harmful influences and create opportunities for improvement.
|
|
|
Ganswindt, A., Palme, R., Heistermann, M., Borragan, S., & Hodges, J. K. (2003). Non-invasive assessment of adrenocortical function in the male African elephant (Loxodonta africana) and its relation to musth. Gen Comp Endocrinol, 134(2), 156–166.
Abstract: Adult male elephants periodically show the phenomenon of musth, a condition associated with increased aggressiveness, restlessness, significant weight reduction and markedly elevated androgen levels. It has been suggested that musth-related behaviours are costly and that therefore musth may represent a form of physiological stress. In order to provide data on this largely unanswered question, the first aim of this study was to evaluate different assays for non-invasive assessment of adrenocortical function in the male African elephant by (i) characterizing the metabolism and excretion of [3H]cortisol (3H-C) and [14C]testosterone (14C-T) and (ii) using this information to evaluate the specificity of four antibodies for determination of excreted cortisol metabolites, particularly with respect to possible cross-reactions with androgen metabolites, and to assess their biological validity using an ACTH challenge test. Based on the methodology established, the second objective was to provide data on fecal cortisol metabolite concentrations in bulls during the musth and non-musth condition. 3H-C (1 mCi) and 14C-T (100 microCi) were injected simultaneously into a 16 year old male and all urine and feces collected for 30 and 86 h, respectively. The majority (82%) of cortisol metabolites was excreted into the urine, whereas testosterone metabolites were mainly (57%) excreted into the feces. Almost all radioactive metabolites recovered from urine were conjugated (86% 3H-C and 97% 14C-T). In contrast, 86% and >99% of the 3H-C and 14C-T metabolites recovered from feces consisted of unconjugated forms. HPLC separations indicated the presence of various metabolites of cortisol in both urine and feces, with cortisol being abundant in hydrolysed urine, but virtually absent in feces. Although all antibodies measured substantial amounts of immunoreactivity after HPLC separation of peak radioactive samples and detected an increase in glucocorticoid output following the ACTH challenge, only two (in feces against 3alpha,11-oxo-cortisol metabolites, measured by an 11-oxo-etiocholanolone-EIA and in urine against cortisol, measured by a cortisol-EIA) did not show substantial cross-reactivity with excreted 14C-T metabolites and could provide an acceptable degree of specificity for reliable assessment of glucocorticoid output from urine and feces. Based on these findings, concentrations of immunoreactive 3alpha,11-oxo-cortisol metabolites were determined in weekly fecal samples collected from four adult bulls over periods of 11-20 months to examine whether musth is associated with increased adrenal activity. Results showed that in each male levels of these cortisol metabolites were not elevated during periods of musth, suggesting that in the African elephant musth is generally not associated with marked elevations in glucocorticoid output. Given the complex nature of musth and the variety of factors that are likely to influence its manifestation, it is clear, however, that further studies, particularly on free-ranging animals, are needed before a possible relationship between musth and adrenal function can be resolved. This study also clearly illustrates the potential problems associated with cross-reacting metabolites of gonadal steroids in EIAs measuring glucocorticoid metabolites. This has to be taken into account when selecting assays and interpreting results of glucocorticoid metabolite analysis, not only for studies in the elephant but also in other species.
|
|
|
Geutjens, C. A., Clayton, H. M., & Kaiser, L. J. (2008). Forces and pressures beneath the saddle during mounting from the ground and from a raised mounting platform. The Veterinary Journal, 175(3), 332–337.
Abstract: The objective was to use an electronic pressure mat to measure and compare forces and pressures of the saddle on a horse's back when riders mounted from the ground and with the aid of a mounting platform. Ten riders mounted a horse three times each from the ground and from a 35 cm high mounting platform in random order. Total force (summation of forces over all 256 sensors) was measured and compared at specific points on the force-time curve. Total force was usually highest as the rider's right leg was swinging upwards and was correlated with rider mass. When normalized to rider mass, total force and peak pressure were significantly higher when mounting from the ground than from a raised platform (P < 0.05). The area of highest pressure was on the right side of the withers in 97% of mounting efforts, confirming the importance of the withers in stabilizing the saddle during mounting.
|
|
|
Grubb, T. L., Foreman, J. H., Benson, G. J., Thurmon, J. C., Tranquilli, W. J., Constable, P. D., et al. (1996). Hemodynamic effects of calcium gluconate administered to conscious horses. J Vet Intern Med, 10(6), 401–404.
Abstract: Calcium gluconate was administered to conscious horses at 3 different rates (0.1, 0.2, and 0.4 mg/kg/min for 15 minutes each). Serum calcium concentrations and parameters of cardiovascular function were evaluated. All 3 calcium administration rates caused marked increases in both ionized and total calcium concentrations, cardiac index, stroke index, and cardiac contractility (dP/dtmax). Mean arterial pressure and right atrial pressure were unchanged; heart rate decreased markedly during calcium administration. Ionized calcium concentration remained between 54% and 57% of total calcium concentration throughout the study. We conclude that calcium gluconate can safely be administered to conscious horses at 0.1 to 0.4 mg/kg/min and that administration will result in improved cardiac function.
|
|