|
Dugatkin, L. A., & Godin, G. J. (1992). Predator inspection, shoaling and foraging under predation hazard in the Trinidadian guppy,Poecilia reticulata. Environmental Biology of Fishes, 34(3), 265–276.
Abstract: Guppies,Poecilia reticulata, living in stream pools in Trinidad, West Indies, approached a potential fish predator (a cichlid fish model) in a tentative, saltatory manner, mainly as singletons or in pairs. Such behavior is referred to as predator inspection behavior. Inspectors approached the trunk and tail of the predator model more frequently, more closely and in larger groups than they approached the predator's head, which is presumably the most dangerous area around the predator. However, guppies were not observed in significantly larger shoals in the stream when the predator model was present. In a stream enclosure, guppies inspected the predator model more frequently when it was stationary compared to when it was moving, and made closer inspections to the posterior regions of the predator than to its head. Therefore, the guppies apparently regarded the predator model as a potential threat and modified their behavior accordingly when inspecting it. Guppies exhibited a lower feeding rate in the presence of the predator, suggesting a trade-off between foraging gains and safety against predation. Our results further suggest that predator inspection behavior may account for some of this reduction in foraging. These findings are discussed in the context of the benefits and costs of predator inspection behavior.
|
|
|
Pimenta, V., Barroso, I., Boitani, L., & Beja, P. (2018). Risks a la carte: Modelling the occurrence and intensity of wolf predation on multiple livestock species. Biol. Conserva., 228, 331–342.
Abstract: Predation on livestock is a source of human-wildlife conflicts and can undermine the conservation of large carnivores. To design effective mitigation strategies, it is important to understand the determinants of predation across livestock species, which often differ in husbandry practices, vulnerability to predators and economic value. Moreover, attention should be given to both predation occurrence and intensity, because these can have different spatial patterns and predictors. We used spatial risk modelling to quantify factors affecting wolf predation on five livestock species in Portugal. Within the 1619 parishes encompassing the entire wolf range in the country, the national wolf compensation scheme recorded 17,670 predation events in 2009-2015, each involving one or more livestock species: sheep (31.7%), cattle (27.7%), goats (26.8%), horses (14.8%) and donkeys (3.2%). Models built with 2009-2013 data and validated with 2014-2015 data, showed a shared general pattern of predation probability on each species increasing with its own density and proximity to wolf packs. For some species there were positive relations with the density of other livestock species, and with habitat variables such as altitude, and land cover by shrubland and natural pastures. There was also a general pattern for predation intensity on each species increasing with its own density, while proximity to wolf packs had no significant effects. Predation intensity on goats, cattle and horses increased with the use of communal versus private pastures. Our results suggest that although predation may occur wherever wolves coexist with livestock species, high predation intensity is mainly restricted to particular areas where husbandry practices increase the vulnerability of animals, and this is where mitigation efforts should concentrate.
|
|
|
Reluga, T. C., & Viscido, S. (2005). Simulated evolution of selfish herd behavior. J. Theor. Biol., 234(2), 213–225.
Abstract: Single species aggregations are a commonly observed phenomenon. One potential explanation for these aggregations is provided by the selfish herd hypothesis, which states that aggregations result from individual efforts to reduce personnel predation risk at the expense of group-mates. Not all movement rules based on the selfish herd hypothesis are consistent with observed animal behavior. Previous work has shown that herd-like aggregations are not generated by movement rules limited to local interactions between nearest neighbors. Instead, rules generating realistic herds appear to require delocalized interactions. To date, it has been an open question whether or not the necessary delocalization can emerge from local interactions under natural selection. To address this question, we study an individual-based model with a single quantitative genetic trait that controls the influence of neighbors as a function of distance. The results indicate that predation-based selection can increase the influence of distant neighbors relative to near neighbors. Our results lend support for the idea that selfish herd behavior can arise from localized movement rules under natural selection.
|
|