|
Hall, R. A., Broom, A. K., Smith, D. W., & Mackenzie, J. S. (2002). The ecology and epidemiology of Kunjin virus. Curr Top Microbiol Immunol, 267, 253–269.
|
|
|
Hebenbrock, M., Due, M., Holzhausen, H., Sass, A., Stadler, P., & Ellendorff, F. (2005). A new tool to monitor training and performance of sport horses using global positioning system (GPS) with integrated GSM capabilities. Dtsch Tierarztl Wochenschr, 112(7), 262–265.
Abstract: Global Positioning Systems (GPS) are considered suitable to monitor the position and velocity of horses during cross-country competition or in training. Furthermore, simultaneous recording of life data such as heart rate could be useful to assess the horse's condition during exercise. To test the suitability and reliability of a commercially available GPS system with integrated heart rate recording system and with built in GSM for data transmission, the Fidelak Equipilot Type EP-2003-15/G-2.11 (EP-15/G) was evaluated first for reliability of pulse recording from a pulse generator within the physiological range of horses; furthermore distance, velocity and heart rate recordings were carried out on a standard 1000 m field track with five repetitions. Agreement (% deviation from actually measured distance and from stopwatch-distance based velocity calculations) and variability (Coefficient of Variation for distance, velocity, heart rate) were calculated. From the results it was safe to assume that the heart rate sensor recorded horse heart rates at a high degree of accuracy. Overall distances and velocities are in high agreement with actually measured values. However, overall variability expressed in terms of relative variability (C.V.) is smaller for distance recording (C.V. 0.68%) when compared to velocity (C.V. 1.01%). The system tested is suitable and reliable for simultaneously recording of distance, velocity and heart rates for horses during cross country exercise. GPS-based monitoring of movement along with simultaneous recording of physiological data and the possibility to call upon data will not only be of benefit for training horses or for surveillance during competition, it may also be suitable for distant patient monitoring and in behavioural studies as well as in veterinary medicine in general.
|
|
|
Marfin, A. A., Petersen, L. R., Eidson, M., Miller, J., Hadler, J., Farello, C., et al. (2001). Widespread West Nile virus activity, eastern United States, 2000. Emerg Infect Dis, 7(4), 730–735.
Abstract: In 1999, the U.S. West Nile (WN) virus epidemic was preceded by widespread reports of avian deaths. In 2000, ArboNET, a cooperative WN virus surveillance system, was implemented to monitor the sentinel epizootic that precedes human infection. This report summarizes 2000 surveillance data, documents widespread virus activity in 2000, and demonstrates the utility of monitoring virus activity in animals to identify human risk for infection.
|
|
|
Mitchell, C. J., Darsie, R. F. J., Monath, T. P., Sabattini, M. S., & Daffner, J. (1985). The use of an animal-baited net trap for collecting mosquitoes during western equine encephalitis investigations in Argentina. J Am Mosq Control Assoc, 1(1), 43–47.
Abstract: A large net trap was used to sample mosquito populations attracted to horses at three sites each in Santa Fe and Rio Negro Provinces, Argentina, during the austral summer of 1984. These provinces, as well as others in Argentina, were affected by a severe epizootic of western equine encephalitis (WEE) during 1982-83. Totals of 2,752 and 6,929 mosquitoes were collected in Santa Fe and Rio Negro Provinces during five and three trap nights, respectively. Culex mosquitoes of the subgenus Culex were predominant (45.8% of total) in the Santa Fe collections, although Aedes albifasciatus also was prevalent (21.7%). The latter species was predominant (95.7% of total) in the Rio Negro collections. The mosquito fauna was less complex (minimum of 6 species) in Rio Negro Province as compared to Santa Fe Province (minimum of 18 species). The advantages of the net trap indicate that this trap can become a useful tool in arbovirus ecology studies in other areas.
|
|
|
Ward, M. P., Ramsay, B. H., & Gallo, K. (2005). Rural cases of equine West Nile virus encephalomyelitis and the normalized difference vegetation index. Vector Borne Zoonotic Dis, 5(2), 181–188.
Abstract: Data from an outbreak (August to October, 2002) of West Nile virus (WNV) encephalomyelitis in a population of horses located in northern Indiana was scanned for clusters in time and space. One significant (p = 0.04) cluster of case premises was detected, occurring between September 4 and 10 in the south-west part of the study area (85.70 degrees N, 45.50 degrees W). It included 10 case premises (3.67 case premises expected) within a radius of 2264 m. Image data were acquired by the Advanced Very High Resolution Radiometer (AVHRR) sensor onboard a National Oceanic and Atmospheric Administration polar-orbiting satellite. The Normalized Difference Vegetation Index (NDVI) was calculated from visible and near-infrared data of daily observations, which were composited to produce a weekly-1km(2) resolution raster image product. During the epidemic, a significant (p < 0.01) decrease (0.025 per week) in estimated NDVI was observed at all case and control premise sites. The median estimated NDVI (0.659) for case premises within the cluster identified was significantly (p < 0.01) greater than the median estimated NDVI for other case (0.571) and control (0.596) premises during the same period. The difference in median estimated NDVI for case premises within this cluster, compared to cases not included in this cluster, was greatest (5.3% and 5.1%, respectively) at 1 and 5 weeks preceding occurrence of the cluster. The NDVI may be useful for identifying foci of WNV transmission.
|
|