|
Call, J. (2006). Inferences by exclusion in the great apes: the effect of age and species. Anim. Cogn., 9(4), 393–403.
Abstract: This study investigated the ability of chimpanzees, gorillas, orangutans, and bonobos to make inferences by exclusion using the procedure pioneered by Premack and Premack (Cognition 50:347-362, 1994) with chimpanzees. Thirty apes were presented with two different food items (banana vs. grape) on a platform and covered with identical containers. One of the items was removed from the container and placed between the two containers so that subjects could see it. After discarding this item, subjects could select between the two containers. In Experiment 1, apes preferentially selected the container that held the item that the experimenter had not discarded, especially if subjects saw the experimenter remove the item from the container (but without seeing the container empty). Experiment 3 in which the food was removed from one of the containers behind a barrier confirmed these results. In contrast, subjects performed at chance levels when a stimulus (colored plastic chip: Exp. 1; food item: Exp. 2 and Exp. 3) designated the item that had been removed. These results indicated that apes made inferences, not just learned to use a discriminative cue to avoid the empty container. Apes perceived and treated the item discarded by the experimenter as if it were the very one that had been hidden under the container. Results suggested a positive relationship between age and inferential ability independent of memory ability but no species differences.
|
|
|
Dunbar, R. I. M., McAdam, M. R., & O'connell, S. (2005). Mental rehearsal in great apes (Pan troglodytes and Pongo pygmaeus) and children. Behav. Process., 69(3), 323–330.
Abstract: The ability to rehearse possible future courses of action in the mind is an important feature of advanced social cognition in humans, and the “social brain” hypothesis implies that it might also be a feature of primate social cognition. We tested two chimpanzees, six orangutans and 63 children aged 3-7 years on a set of four puzzle boxes, half of which were presented with an opportunity to observe the box before being allowed to open it (“prior view”), the others being given without an opportunity to examine the boxes before handling them (“no prior view”). When learning effects are partialled out, puzzle boxes in the “prior view” condition were opened significantly faster than boxes given in the “no prior view” condition by the children, but not by either of the great apes. The three species differ significantly in the speed with which they opened boxes in the “no prior view” condition. The three species' performance on this task was a function of relative frontal lobe volume, suggesting that it may be possible to identify quantitative neuropsychological differences between species.
|
|
|
Galdikas, B. M. (1989). Orangutan tool use. Science, 243(4888), 152.
|
|
|
Herrmann, E., Melis, A. P., & Tomasello, M. (2006). Apes' use of iconic cues in the object-choice task. Anim. Cogn., 9(2), 118–130.
Abstract: In previous studies great apes have shown little ability to locate hidden food using a physical marker placed by a human directly on the target location. In this study, we hypothesized that the perceptual similarity between an iconic cue and the hidden reward (baited container) would help apes to infer the location of the food. In the first two experiments, we found that if an iconic cue is given in addition to a spatial/indexical cue – e.g., picture or replica of a banana placed on the target location – apes (chimpanzees, bonobos, orangutans, gorillas) as a group performed above chance. However, we also found in two further experiments that when iconic cues were given on their own without spatial/indexical information (iconic cue held up by human with no diagnostic spatial/indexical information), the apes were back to chance performance. Our overall conclusion is that although iconic information helps apes in the process of searching hidden food, the poor performance found in the last two experiments is due to apes' lack of understanding of the informative (cooperative) communicative intention of the experimenter.
|
|
|
Kaminski, J., Call, J., & Tomasello, M. (2004). Body orientation and face orientation: two factors controlling apes' behavior from humans. Anim. Cogn., 7(4), 216–223.
Abstract: A number of animal species have evolved the cognitive ability to detect when they are being watched by other individuals. Precisely what kind of information they use to make this determination is unknown. There is particular controversy in the case of the great apes because different studies report conflicting results. In experiment 1, we presented chimpanzees, orangutans, and bonobos with a situation in which they had to request food from a human observer who was in one of various attentional states. She either stared at the ape, faced the ape with her eyes closed, sat with her back towards the ape, or left the room. In experiment 2, we systematically crossed the observer's body and face orientation so that the observer could have her body and/or face oriented either towards or away from the subject. Results indicated that apes produced more behaviors when they were being watched. They did this not only on the basis of whether they could see the experimenter as a whole, but they were sensitive to her body and face orientation separately. These results suggest that body and face orientation encode two different types of information. Whereas face orientation encodes the observer's perceptual access, body orientation encodes the observer's disposition to transfer food. In contrast to the results on body and face orientation, only two of the tested subjects responded to the state of the observer's eyes.
|
|
|
Morton, D. B. (2000). Self-consciousness and animal suffering. Biologist (London), 47(2), 77–80.
Abstract: Animals with relatively highly developed brains are likely to experience some degree of self-awareness and the ability to think. As well as being interesting in its own right, self-consciousness matters from an ethical point of view, since it can give rise to forms of suffering above and beyond the immediate physical sensations of pain or distress. This article surveys the evidence for animal self-consciousness and its implications for animal welfare.
|
|
|
Mulcahy, N. J., & Call, J. (2006). Apes save tools for future use. Science, 312(5776), 1038–1040.
Abstract: Planning for future needs, not just current ones, is one of the most formidable human cognitive achievements. Whether this skill is a uniquely human adaptation is a controversial issue. In a study we conducted, bonobos and orangutans selected, transported, and saved appropriate tools above baseline levels to use them 1 hour later (experiment 1). Experiment 2 extended these results to a 14-hour delay between collecting and using the tools. Experiment 3 showed that seeing the apparatus during tool selection was not necessary to succeed. These findings suggest that the precursor skills for planning for the future evolved in great apes before 14 million years ago, when all extant great ape species shared a common ancestor.
|
|
|
Mulcahy, N. J., & Call, J. (2006). How great apes perform on a modified trap-tube task. Anim. Cogn., 9(3), 193–199.
Abstract: To date, neither primates nor birds have shown clear evidence of causal knowledge when attempting to solve the trap tube task. One factor that may have contributed to mask the knowledge that subjects may have about the task is that subjects were only allowed to push the reward away from them, which is a particularly difficult action for primates in certain problem solving situations. We presented five orangutans (Pongo pygmaeus), two chimpanzees (Pan troglodytes), two bonobos (Pan paniscus), and one gorilla (Gorilla gorilla) with a modified trap tube that allowed subjects to push or rake the reward with the tool. In two additional follow-up tests, we inverted the tube 180 degrees rendering the trap nonfunctional and also presented subjects with the original task in which they were required to push the reward out of the tube. Results showed that all but one of the subjects preferred to rake the reward. Two orangutans and one chimpanzee (all of whom preferred to rake the reward), consistently avoided the trap only when it was functional but failed the original task. These findings suggest that some great apes may have some causal knowledge about the trap-tube task. Their success, however, depended on whether they were allowed to choose certain tool-using actions.
|
|
|
Russon, A. E., Handayani, D. P., Kuncoro, P., & Ferisa, A. (2007). Orangutan leaf-carrying for nest-building: toward unraveling cultural processes. Anim. Cogn., 10(2), 189–202.
Abstract: We report an empirical study on leaf-carrying, a newly discovered nest-building technique that involves collecting nest materials before reaching the nest site. We assessed whether leaf-carrying by rehabilitant orangutans on Kaja Island, Central Kalimantan, owes to cultural influences. Findings derive from ca 600 h observational data on nesting skills and nesting associations in Kaja's 42 resident rehabilitants, which yielded 355 nests and 125 leaf-carrying cases by 34 rehabilitants. Regional contrasts with 14 other communities (7 rehabilitant, 7 wild) indicated cultural influences on leaf-carrying on Kaja. Association data showed exceptional social learning opportunities for leaf-carrying on Kaja, with residents taking differential advantage of these opportunities as a function of development, experience, and social position. Juvenile males with basic nesting skills were most influenced by social input. Most (27) leaf-carriers had probably learned leaf-carrying when caged and 7 probably learned it on Kaja. Social priming was probably the main impetus to leaf-carrying on Kaja, by simply prompting observers to copy when leaf-carrying associates collected nesting materials, what they collected, and where they used their collected materials. Implications concern acquisition processes and ontogenetic schedules that orchestrate sets of features-needs or interests, cognitive abilities, social preferences-which enable cultural transmission.
|
|
|
Stoinski, T. S., & Whiten, A. (2003). Social learning by orangutans (Pongo abelii and Pongo pygmaeus) in a simulated food-processing task. J Comp Psychol, 117(3), 272–282.
Abstract: Increasing evidence for behavioral differences between populations of primates has created a resurgence of interest in examining mechanisms of information transfer between individuals. The authors examined the social transmission of information in 15 captive orangutans (Pongo abelii and Pongo pygmaeus) using a simulated food-processing task. Experimental subjects were shown 1 of 2 methods for removing a suite of defenses on an “artificial fruit.” Control subjects were given no prior exposure before interacting with the fruit. Observing a model provided a functional advantage in the task, as significantly more experimental than control subjects opened the fruit. Within the experimental groups, the authors found a trend toward differences in the actual behaviors used to remove 1 of the defenses. Results support observations from the wild implying horizontal transfer of information in orangutans and show that a number of social learning processes are likely to be involved in the transfer of knowledge in this species.
|
|