|
Harland, M. M., Stewart, A. J., Marshall, A. E., & Belknap, E. B. (2006). Diagnosis of deafness in a horse by brainstem auditory evoked potential. Can Vet J, 47(2), 151–154.
Abstract: Deafness was confirmed in a blue-eyed, 3-year-old, overo paint horse by brainstem auditory evoked potential. Congenital inherited deafness associated with lack of facial pigmentation was suspected. Assessment of hearing should be considered, especially in paint horses, at the time of pre-purchase examination. Brainstem auditory evoked potential assessment is well tolerated and accurate.
|
|
|
Kiltie, R. A., Fan, J., & Laine, A. F. (1995). A wavelet-based metric for visual texture discrimination with applications in evolutionary ecology. Math Biosci, 126(1), 21–39.
Abstract: Much work on natural and sexual selection is concerned with the conspicuousness of visual patterns (textures) on animal and plant surfaces. Previous attempts by evolutionary biologists to quantify apparency of such textures have involved subjective estimates of conspicuousness or statistical analyses based on transect samples. We present a method based on wavelet analysis that avoids subjectivity and that uses more of the information in image textures than transects do. Like the human visual system for texture discrimination, and probably like that of other vertebrates, this method is based on localized analysis of orientation and frequency components of the patterns composing visual textures. As examples of the metric's utility, we present analyses of crypsis for tigers, zebras, and peppered moth morphs.
|
|
|
Palmer, M. E., Calve, M. R., & Adamo, S. A. (2006). Response of female cuttlefish Sepia officinalis (Cephalopoda) to mirrors and conspecifics: evidence for signaling in female cuttlefish. Anim. Cogn., 9(2), 151–155.
Abstract: Cuttlefish have a large repertoire of body patterns that are used for camouflage and interspecific signaling. Intraspecific signaling by male cuttlefish has been well documented but studies on signaling by females are lacking. We found that females displayed a newly described body pattern termed Splotch toward their mirror image and female conspecifics, but not to males, prey or inanimate objects. Female cuttlefish may use the Splotch body pattern as an intraspecific signal, possibly to reduce agonistic interactions. The ability of females to produce a consistent body pattern in response to conspecifics and mirrors suggests that they can recognize same-sex conspecifics using visual cues, despite the lack of sexual dimorphism visible to human observers.
|
|