|
Andrews, F. M., Ralston, S. L., Sommardahl, C. S., Maykuth, P. L., Green, E. M., White, S. L., et al. (1994). Weight, water, and cation losses in horses competing in a three-day event. J Am Vet Med Assoc, 205(5), 721–724.
Abstract: Body weight of 48 horses competing in a 3-day event was measured the day before the event (baseline), following the dressage phase of the event (day 1), after the endurance phases of the event (day 2), and 18 to 24 hours after the endurance phases (day 3). Plasma sodium and potassium concentrations were measured the evening before, immediately after, and 10 minutes after the endurance phases. Total body water, water loss, and net exchangeable cation loss were then calculated. Body weight and total body water were significantly decreased, compared with baseline values, at all times during the event, and significant water loss was detected. The largest changes were recorded after the endurance phases of the event. Water deficits were still detected 18 to 24 hours after the endurance phases of the event. Mean plasma sodium concentration was significantly increased immediately after the endurance phases of the event, compared with concentration measured the evening before, and remained increased after the 10-minute recovery period, presumably because of dehydration. Mean plasma potassium concentration was significantly increased immediately after the endurance phases of the event, compared with concentration measured the evening before, but was not increased after the 10-minute recovery period.
|
|
|
Argue, C. K., & Clayton, H. M. (1993). A preliminary study of transitions between the walk and trot in dressage horses. Acta Anat (Basel), 146(2-3), 179–182.
Abstract: The object of this study was to determine the limb support sequence during the transitions from walk to trot and from trot to walk in dressage horses under saddle and to test the null hypothesis that the limb support sequence during the transitions is not related to the level of training. Sixteen dressage horses training at novice to FEI Grand Prix level were videotaped performing an average of 9 transitions each from walk to trot and from trot to walk. The 30-Hz videotapes were viewed in slow motion, and based on the limb support sequence the transitions were categorized into two types. In type 1 transitions there were no intermediate steps between the walk and trot sequences. Type 2 transitions were characterized by intermediate steps, including a single support phase. The Kendall rank-order correlation coefficient showed that a higher level of training was positively associated with an increased percentage of type 1 transitions for both walk-to-trot transitions (p < or = 0.05) and trot-to-walk transitions (p < or = 0.01). No significant preference for initiating or completing the trot on the left or right diagonal was found using the binomial test for individual horses and the Wilcoxon signed-ranks test for the group.
|
|
|
Barrey, E., Desliens, F., Poirel, D., Biau, S., Lemaire, S., Rivero, J. L. L., et al. (2002). Early evaluation of dressage ability in different breeds. Equine Vet J Suppl, (34), 319–324.
Abstract: Dressage is one of the Olympic equestrian sports practiced in several countries using different horse breeds. Specific characteristics of the walk, trot and canter are required for dressage. It has been assumed that some of these traits could be selected for genetically and contribute to dressage performance. The purpose of this study was to compare the walk, trot and conformation characteristics in young horses of different breeds used for dressage. A total of 142 horses age 3 years were classified into 3 groups of breeds (German, French and Spanish saddle horses) and tested using the same procedure. The skeletal conformation measurements were made by image analysis. Gait variables of the walk and trot were measured by the accelerometric gait analysis system Equimetrix. Discriminant analysis could explain the variability between the groups by taking into account the walk (P<0.0003), trot (P<0.0001) and conformation variables (P<0.0001). Many gait and conformation variables were significantly different between the breeds. In summary, the German horses had gait characteristics more adapted for dressage competition, and the results of this group could be used as a reference for early evaluation in dressage. Purebred Spanish horses could be considered as a reference for collected gaits used for farm work and old academic dressage. The gait and conformation tests could be applied in a breeding or crossing plan to detect more accurately young horses with good dressage ability.
|
|
|
Bell, R. J. W., Kingston, J. K., Mogg, T. D., & Perkins, N. R. (2007). The prevalence of gastric ulceration in racehorses in New Zealand. N Z Vet J, 55(1), 13–18.
Abstract: AIM: To establish the prevalence and factors influencing the prevalence and severity of gastric ulceration in racehorses in New Zealand. METHODS: Horses (n=171) in active training for racing by trainers (n=24) located throughout New Zealand were examined using gastroscopy during 2003 and 2004. Images of the examination were recorded and reviewed, and an ordinal grade based on the severity of gastric ulceration present was assigned, using the grading system proposed by the Equine Gastric Ulcer Council (EGUC). Information about the horses such as age, breed, sex, stabling, time at pasture, pasture quality, and presence of clinical signs consistent with equine gastric ulcer syndrome (EGUS) was recorded. RESULTS: Of the 171 horses in the study, 133 (78%) were Thoroughbreds and 38 (22%) were Standardbreds. Evidence of gastric ulceration was present in 151 (88.3%) of these. Prevalence of ulceration was higher at the lesser curvature (LC) and greater curvature (GC) of the stomach than at the saccus caecus (SC; p<0.01), and ulceration was more severe at the LC than at either the GC (p=0.02) or the SC (p<0.001). The prevalence of ulceration did not differ between the two breeds (p=0.51) or between horses of differing ages (p=0.56). Gastric ulceration was evident in 125/141 (89%) horses kept at pasture for at least 4 h/day, in all 13 (100%) horses kept at pasture full time, and in 16/17 (94%) horses stabled full time. Prevalence and severity of ulceration did not differ between horses stabled full time, kept at pasture for part of the day or kept at pasture full time (p=0.33 and 0.13, respectively), and for horses grazed on pasture severity of ulceration did not vary significantly with the quality of the pasture (p=0.12). Neither prevalence (p=0.26) nor severity (p=0.49) of gastric ulceration varied significantly with duration of training. CONCLUSIONS: The prevalence of gastric ulceration in racehorses in New Zealand is similar to that reported elsewhere for horses in active training for racing. Access to pasture for some or all of the day did not appear to be protective.
|
|
|
Boden, L. A., Anderson, G. A., Charles, J. A., Morgan, K. L., Morton, J. M., Parkin, T. D. H., et al. (2006). Risk of fatality and causes of death of Thoroughbred horses associated with racing in Victoria, Australia: 1989-2004. Equine Vet J, 38(4), 312–318.
Abstract: REASONS FOR PERFORMING STUDY: Determining the risk of fatality of Thoroughbred horses while racing is essential to assess the impact of intervention measures designed to minimise such fatalities. OBJECTIVES: To measure the risk of racehorse fatality in jump and flat starts on racecourses in Victoria, Australia, over a 15 year period and to determine proportional mortality rates for specific causes of death. METHODS: All fatalities of Thoroughbred horses that occurred during or within 24 h of a race were identified from a database. The risk of a start resulting in a racehorse fatality in all races and within flat and jump races, proportional mortality rates, population attributable risk, population attributable fraction and risk ratios were calculated along with 95% confidence intervals. Poisson regression was also performed to estimate risk ratios. RESULTS: There were 514 fatalities over the 15 year period; 316 in flat races and 198 in jump races. The risk of fatality was 0.44 per 1000 flat starts and 8.3 per 1000 jump starts (18.9 x greater). The risk of fatality on city tracks was 1.1 per 1000 starts whereas on country tracks it was 0.57 per 1000 starts. Of the 316 fatalities in flat races, 73.4% were due to limb injury, 2.5% to cranial or vertebral injury and 19.0% were sudden deaths. Of the 198 fatalities in jump races, 68.7% were due to limb injury, 16.2% to cranial or vertebral injury and 3.5% were sudden deaths. The risk of fatality in flat starts increased between 1989 and 2004 but the risk in jump starts remained unchanged over the 15 year period. CONCLUSIONS: The risk of fatality in flat starts was lower in Victoria than North America and the UK but the risk in jump starts was greater. Catastrophic limb injury was the major reason for racehorse fatality in Victoria but there was a larger percentage of sudden deaths than has been reported overseas. The risk of fatality in jump starts remained constant over the study period despite jump racing reviews that recommended changes to hurdle and steeple races to improve safety. POTENTIAL RELEVANCE: This study provides important benchmarks for the racing industry to monitor racetrack fatalities and evaluate intervention strategies.
|
|
|
Bystrom, A., Roepstorff, L., & Johnston, C. (2006). Effects of draw reins on limb kinematics. Equine Vet J Suppl, (36), 452–456.
Abstract: REASONS FOR PERFORMING STUDY: No data exist on the GRF-kinematics relation due to changes caused by equestrian interventions. HYPOTHESIS: Through the judicious use of draw reins the rider can influence the kinematics of the horse to meet stated goals of dressage training. Relating the results to previously published kinetic data of the same experiment implies a possible relationship between kinetics and kinematics. METHODS: The kinematics of 8 sound Swedish Warmblood horses were measured whilst the horses were being ridden with and without draw reins. Three conditions were evaluated: 1) draw reins only (DR), 2) combination of draw reins and normal reins (NR+DR) and 3) normal reins only (NR). RESULTS: Head and neck angles were significantly decreased by the draw rein but 4-5 times more so for DR when with NR+DR. The forelimb position at hoof lift-off was significantly more caudal with DR. In the hind limb the hip joint extended more quickly and the hock joint flexed more with NR+DR than with NR. Compared to DR the hip joint angular pattern was not significantly different, but the pelvis was more horizontal. CONCLUSION: Riding with a draw rein can have significant influence on the kinematics of the horse. Some of the observed changes can be coupled to changes in kinetics. The hock joint angle seems to be a fairly reliable indicator of load on the hind limb and the angle of femur appears important for hind limb propulsion, when considered in conjunction with the orientation of the pelvis. POTENTIAL RELEVANCE: These findings are important for riders and trainers, as kinematic changes are what trainers observe. It is thereby important to ascertain which kinematic changes are consistently coupled to changes in kinetics in order for trainers to be able to judge correctly the success of intended goals. Further studies are warranted to validate and confirm suggested relationships between kinetics and kinematics.
|
|
|
Cayado, P., Munoz-Escassi, B., Dominguez, C., Manley, W., Olabarri, B., Sanchez de la Muela, M., et al. (2006). Hormone response to training and competition in athletic horses. Equine Vet J Suppl, (36), 274–278.
Abstract: REASONS FOR PERFORMING STUDY: It is recognised that the amount of psychological stress that an animal encounters determines the degree of response of the hypothalamic-pituitary-adrenal (HPA) axis. In human athletes, the added emotive stress of competition is an important element in the adrenal response. The aim of this study was to examine the effect of show-jumping as well as dressage on stress levels by comparing horses' stress response at a horse show compared to their familiar home. METHODS: Fifty-one horses involved in competition were used. EDTA blood samples were collected before exercise, upon arrived to the schooling area (control), and k over a jump or dressage course. After sampling, plasma was separated and stored at -80 degrees C until determinations of cortisol and ACTH were performed. Fourteen healthy horses not involved in competition were used as control group. RESULTS: Competition induced a significant increase in cortisol and ACTH responses in both, jumping and dressage horses and this effect was more apparent in dressage horses. When horses were most experienced, cortisol and ACTH responses were much lower. CONCLUSION: This study shows that competition elicits a classic physiological stress response in horses and that different training programmes induce different responses. It suggests that horses involved in competition can provide a good model to study the exercise-induced stress response.
|
|
|
Clayton, H. M. (1993). Development of conditioning programs for dressage horses based on time-motion analysis of competitions. J Appl Physiol, 74(5), 2325–2329.
Abstract: The time-motion characteristics of Canadian basic- and medium-level dressage competitions are described, and the results are applied in formulating sport-specific conditioning programs. One competition was analyzed at the six levels from basic 1 to medium 3. Each test was divided into a series of sequences based on the type and speed of activity. The durations of the sequences were measured from videotapes. The basic-level tests had fewer sequences, and they were shorter in distance and duration than the medium tests (P < 0.10), but the average speed did not differ between the two levels. It is recommended that horses competing at the basic levels be conditioned using 5-min exercise periods, with short (10-s) bursts of lengthened trot and canter included at basic 2 and above. In preparation for medium-level competitions, the duration of the work periods increases to 7 min, 10- to 12-s bursts of medium or extended trot and canter are included, and transitions are performed frequently to simulate the energy expenditure in overcoming inertia.
|
|
|
Clayton, H. M. (1993). The extended canter: a comparison of some kinematic variables in horses trained for dressage and for racing. Acta Anat (Basel), 146(2-3), 183–187.
Abstract: This study was designed to test the hypothesis that there is no significant difference in selected temporal and linear stride variables of the extended canter in horses bred and trained for dressage or racing. Nine advanced-level dressage horses and 7 Thoroughbred racehorses were filmed at a frame rate of 200 Hz at an extended canter on a sand track. Two strides were recorded per trial, and each horse performed 6 or 7 trials. Temporal and linear data were determined from the films, and descriptive statistics (mean, SD) were calculated. Strides were selected for analysis on the basis of having a velocity in the range of 6.0-7.0 m/s, and multivariate analysis of variance was used to detect significant differences in the stride kinematics of horses trained for the two sports (p < or = 0.01). The average velocity of the dressage horses was 6.37 m/s, compared with 6.40 m/s for the racehorses. There were no significant differences between the two groups in velocity, stride duration, stride length or the distances between limb placements. The stance durations of all four limbs and the overlaps between them were longer, whereas the duration of the suspension phase was shorter in the dressage horses than in the racehorses (p < or = 0.01). The time between impacts of the diagonal limb pair was close to zero in both groups, with individual horses showing some variability in the order of placement of the diagonal limb pair. However, the sequence of footfalls was not significantly different between the two groups (p < or = 0.01).
|
|
|
Clayton, H. M. (1995). Comparison of the stride kinematics of the collected, medium, and extended walks in horses. Am J Vet Res, 56(7), 849–852.
Abstract: Six horses, highly trained for dressage competition, were used to study the stride kinematics of the walk, and to compare the kinematics of the collected, medium, and extended walks. Horses were filmed in a sagittal plane at a rate of 150 frames/s; temporal, linear, and angular data were extracted from the films. Results of ANOVA and Duncan's multiple range test indicated that the speed of the collected walk (1.37 m/s) was significantly (P < 0.01) slower than that of the medium (1.73 m/s) and extended (1.82 m/s) walks, values for which were not significantly different from each other. The increase in speed was associated with a significant increase in stride length, from 157 cm in the collected walk to 193 cm in the extended walk. This was a result of an increase in the over-tracking distance, whereas there was no significant difference in the distance between lateral placements of the limbs. Stride duration decreased (P < 0.01) from the collected walk (1,159 ms) to the extended walk (1,064 ms). Angles of the metacarpal and metatarsal segments, measured on the palmar/ plantar aspect, were higher at impact and lower at lift off in the collected than in the extended walk (P < 0.01). This indicated greater range of angular motion of this segment during the stance phase in the extended walk. Only 1 of the 6 horses had a regular 4-beat rhythm of the footfalls, with equal time elapsing between the lateral and diagonal footfalls.
|
|