|
Bystrom, A., Roepstorff, L., & Johnston, C. (2006). Effects of draw reins on limb kinematics. Equine Vet J Suppl, (36), 452–456.
Abstract: REASONS FOR PERFORMING STUDY: No data exist on the GRF-kinematics relation due to changes caused by equestrian interventions. HYPOTHESIS: Through the judicious use of draw reins the rider can influence the kinematics of the horse to meet stated goals of dressage training. Relating the results to previously published kinetic data of the same experiment implies a possible relationship between kinetics and kinematics. METHODS: The kinematics of 8 sound Swedish Warmblood horses were measured whilst the horses were being ridden with and without draw reins. Three conditions were evaluated: 1) draw reins only (DR), 2) combination of draw reins and normal reins (NR+DR) and 3) normal reins only (NR). RESULTS: Head and neck angles were significantly decreased by the draw rein but 4-5 times more so for DR when with NR+DR. The forelimb position at hoof lift-off was significantly more caudal with DR. In the hind limb the hip joint extended more quickly and the hock joint flexed more with NR+DR than with NR. Compared to DR the hip joint angular pattern was not significantly different, but the pelvis was more horizontal. CONCLUSION: Riding with a draw rein can have significant influence on the kinematics of the horse. Some of the observed changes can be coupled to changes in kinetics. The hock joint angle seems to be a fairly reliable indicator of load on the hind limb and the angle of femur appears important for hind limb propulsion, when considered in conjunction with the orientation of the pelvis. POTENTIAL RELEVANCE: These findings are important for riders and trainers, as kinematic changes are what trainers observe. It is thereby important to ascertain which kinematic changes are consistently coupled to changes in kinetics in order for trainers to be able to judge correctly the success of intended goals. Further studies are warranted to validate and confirm suggested relationships between kinetics and kinematics.
|
|
|
Cottin, F., Barrey, E., Lopes, P., & Billat, V. (2006). Effect of repeated exercise and recovery on heart rate variability in elite trotting horses during high intensity interval training. Equine Vet J Suppl, (36), 204–209.
Abstract: REASONS FOR PERFORMING STUDY: Interval training is a commonly used training method for trotting horses. In addition, trainers are provided with efficient and inexpensive heart rate monitor devices for the management of training. HYPOTHESIS: Since the high frequency (HF) frequency peak (fHF) of heart rate variability (HRV) corresponds to the breathing frequency in combination with stride frequency during trotting, it is hypothesised that modifications of breathing and stride frequencies induced by repeated exercise could be detected from fHF. METHODS: RR interval time series of 7 trotting horses were recorded during an interval training session. Interval training was made up of 5 successive 800 m high-velocity trotting runs (H1, H2...H5) separated by 1 min recovery bouts at low speed (R1, R2...R5). Fast Fourier transform (FFT) and Poincare plot analysis techniques were applied to RR series. RESULTS: Repeated exercise had significant effects on HRV components during interval training. Despite constant trotting velocities during high-speed and recovery, repetition induced a decrease in mean RR interval (H1: 295 +/- 19 vs. H5: 283 +/- 15 msec, P<0.05) and in the root mean square of successive differences in RR series (RMSSD; H1: 6.31 +/- 1.28 vs. H5: 5.31 +/- 1.31 msec, P<0.05). Furthermore, high-speed and recovery repetitions induced an increase in fHF (H1: 1.37 +/- 0.35 vs. H5: 1.62 +/- 0.40 Hz and R1: 0.22 +/- 0.02 vs. R4: 0.64 +/- 0.38 Hz, P<0.05). Hence, recovery induced a decrease in the s.d. of the successive RR series (SDRR; R3: 10.5 +/- 3.96 vs. R5: 6.17 +/- 2.65 msecs, P>0.05) and in the long term index of Poincare plot (SD2; R1: 43.29 +/- 28.90 vs. R5: 18.19 +/- 9.35 msecs, P<0.05). CONCLUSIONS: The observed increase in fHF during the interval training could be induced by alterations of the coupling between breathing and stride frequency linked to the emergence of fatigue. The decrease in SD2 and SDRR during successive recovery bouts could be linked with a deterioration of the recovery pattern. POTENTIAL RELEVANCE: HRV can provide breathing frequency data of Standardbreds during training without any respiratory device. Furthermore, HRV could provide useful makers of the emergence of fatigue states during training.
|
|
|
Kinnunen, S., Laukkanen, R., Haldi, J., Hanninen, O., & Atalay, M. (2006). Heart rate variability in trotters during different training periods. Equine Vet J Suppl, (36), 214–217.
Abstract: REASONS FOR PERFORMING STUDY: Endurance training induces changes in autonomic nervous system functions. High intensity training includes the risk of overtraining, in man and horse. Heart rate variability (HRV) is a noninvasive measurement of the autonomic regulation of the heart rate, which is quick and easy to measure with modern telemetric technology. HYPOTHESIS: Since HRV is affected by changes in the autonomic nervous system, it might be an early stage indicator of poor recovery from a previous bout of exercise or overreaching or overtraining in horses in general. METHODS: The aim of the study was to monitor recovery and the possible overtraining status in horses by measuring HRV. The measurements reflected the responses of the previous day activities during different training periods including basic training, precompetition and competition during a one-year follow-up. RESULTS: HRV was at the highest during precompetition period (P<0.05) and it decreased significantly during competition period (P<0.05), indicating an increased stress load in the competition period. Walking increased HRV significantly compared to complete rest or jogging as previous day activities during basic training and precompetition periods (P<0.05). This finding suggests that horses are more relaxed during moderate exercise than standing still or anaerobic exercise. CONCLUSIONS: HRV can be used to monitor the cardiovascular responses to training in horses but confirmatory measures may also be required in addition to HRV to exclude other possible causes of underperformance.
|
|
|
Murray, J. K., Senior, J. M., & Singer, E. R. (2006). A comparison of cross-country recovery rates at CCI 2* with and without steeplechase competitions. Equine Vet J Suppl, (36), 133–138.
Abstract: REASONS FOR PERFORMING STUDY: Short format 3-day events were introduced in 2004. Anecdotal reports suggested that horses were more tired on completion of the cross-country phase of short format events when compared with horses completing the cross-country phase of long format competitions, despite the absence of Phases A, B and C. OBJECTIVES: To compare the physiological parameters and haematological parameters of horses that had completed the cross-country phase of a short format (SF) and a long format (LF) CCI 2* competition. METHODS: During a CCI 2* competition 69 competitors took part in the short format and 74 in the long format competition. Long format competitors completed Phases A, B, C and D and short format competitors completed Phase D only. Phase D (the cross-country course) was identical for both competitions. Two-way ANOVA for repeated measures and post hoc tests were used to compare temperature, pulse and respiration rates of horses competing in both types of competition. T tests were used to compare mean lactate and electrolyte concentrations, while U-Mann Whitney tests were used to compare CK and AST levels measured in horses competing in the short and long formats of the event. RESULTS: Training schedules, age and previous competition experience were not significantly different between horses competing in the SF and LF competitions. On completion of Phase D, SF horses had significantly higher PCV and significantly lower ionised calcium concentrations when compared with LF horses. LF horses had significantly higher heart rates than SF horses 10 min prior to starting Phase D and immediately after completing Phase D; however, no other significant differences were found between the 2 groups of horses. CONCLUSIONS: Only weak evidence was found to support the hypothesis that the workload for the horse in a SF CCI 2* competition is significantly different when compared to the LF CCI 2* competition. POTENTIAL RELEVANCE: There is no beneficial or detrimental effect on horses that complete short format CCI 2* competitions as compared to those that complete long format CCI 2* competitions but further research is required into the physiological response of horses at CCI 3* and CCI 4* short format competitions.
|
|
|
Santamaria, S., Bobbert, M. F., Back, W., Barneveld, A., & van Weeren, P. R. (2005). Effect of early training on the jumping technique of horses. Am J Vet Res, 66(3), 418–424.
Abstract: OBJECTIVE: To investigate the effects of early training for jumping by comparing the jumping technique of horses that had received early training with that of horses raised conventionally. ANIMALS: 40 Dutch Warmblood horses. PROCEDURE: The horses were analyzed kinematically during free jumping at 6 months of age. Subsequently, they were allocated into a control group that was raised conventionally and an experimental group that received 30 months of early training starting at 6 months of age. At 4 years of age, after a period of rest in pasture and a short period of training with a rider, both groups were analyzed kinematically during free jumping. Subsequently, both groups started a 1-year intensive training for jumping, and at 5 years of age, they were again analyzed kinematically during free jumping. In addition, the horses competed in a puissance competition to test maximal performance. RESULTS: Whereas there were no differences in jumping technique between experimental and control horses at 6 months of age, at 4 years, the experimental horses jumped in a more effective manner than the control horses; they raised their center of gravity less yet cleared more fences successfully than the control horses. However, at 5 years of age, these differences were not detected. Furthermore, the experimental horses did not perform better than the control horses in the puissance competition. CONCLUSIONS AND CLINICAL RELEVANCE: Specific training for jumping of horses at an early age is unnecessary because the effects on jumping technique and jumping capacity are not permanent.
|
|
|
Takahashi, T., Kasashima, Y., Eto, D., Mukai, K., & Hiraga, A. (2006). Effect of uphill exercise on equine superficial digital flexor tendon forces at trot and canter. Equine Vet J Suppl, (36), 435–439.
Abstract: REASONS FOR PERFORMING STUDY: One cause of overstrain injury to the superficial digital flexor tendon (SDFT) in horses is the force loaded on the SDFT during repeated running. Therefore, decreasing this force may reduce SDFT injury. It has been reported that strain on the SDFT decreases with a toe-wedge shoe. Uphill courses are used for training of racehorses, and the angle of hoof-sole to the horizon during uphill running is similar to that of the toe-wedge shoe. OBJECTIVES: To determine the effects of uphill exercise on the force on the SDFT during trotting and cantering. METHODS: Arthroscopically implantable force probes (AIFP) were implanted into the SDFT of the left or right forelimb of 7 Thoroughbred horses and AIFP output recorded during trotting and cantering on a treadmill inclined at slopes of 0, 3 or 8%, and then 0% again. Superficial digital flexor tendon force was calculated as a relative value, with the amplitude of AIFP output voltage at initial 0% slope equal to 100. RESULTS: Out of 14 sets of experiments, AIFP data were analysed successfully in 9 at the trot, in 3 at the canter in the trailing forelimb on a slope of 3 and 8%, and in 2 at the canter in the leading forelimb on a slope of 3%. Increasing the incline from 0-8% tended to decrease peak force in the SDFT at the trot, and in the trailing forelimb at the canter. However, force in the SDFT was unchanged in the leading forelimb at the canter on the 3% incline. CONCLUSIONS: The force in the SDFT trotting or cantering uphill is unchanged or lower than that loaded at the same speed on a flat surface. Because at similar speeds the workload for uphill exercise is greater than on the flat, uphill running increases exercise intensity without increasing force in the SDFT. POTENTIAL RELEVANCE: Uphill exercise may reduce the risk of SDFT injury as both running speed and SDFT force are decreased on an incline as compared to the flat, even when exercise intensity is the same. Further study is needed to confirm these findings at canter in a larger population of horses.
|
|