|
Acuna, B. D., Sanes, J. N., & Donoghue, J. P. (2002). Cognitive mechanisms of transitive inference. Exp Brain Res, 146(1), 1–10.
Abstract: We examined how the brain organizes interrelated facts during learning and how the facts are subsequently manipulated in a transitive inference (TI) paradigm (e.g., if A<B and B<C, then A<C). This task determined features such as learned facts and behavioral goals, but the learned facts could be organized in any of several ways. For example, if one learns a list by operating on paired items, the pairs may be stored individually as separate facts and reaction time (RT) should decrease with learning. Alternatively, the pairs may be stored as a single, unified list, which may yield a different RT pattern. We characterized RT patterns that occurred as participants learned, by trial and error, the predetermined order of 11 shapes. The task goal was to choose the shape occurring closer to the end of the list, and feedback about correctness was provided during this phase. RT increased even as its variance decreased during learning, suggesting that the learnt knowledge became progressively unified into a single representation, requiring more time to manipulate as participants acquired relational knowledge. After learning, non-adjacent (NA) list items were presented to examine how participants reasoned in a TI task. The task goal also required choosing from each presented pair the item occurring closer to the list end, but without feedback. Participants could solve the TI problems by applying formal logic to the previously learnt pairs of adjacent items; alternatively, they could manipulate a single, unified representation of the list. Shorter RT occurred for NA pairs having more intervening items, supporting the hypothesis that humans employ unified mental representations during TI. The response pattern does not support mental logic solutions of applying inference rules sequentially, which would predict longer RT with more intervening items. We conclude that the brain organizes information in such a way that reflects the relations among the items, even if the facts were learned in an arbitrary order, and that this representation is subsequently used to make inferences.
|
|
|
Aust, U., & Huber, L. (2006). Picture-object recognition in pigeons: evidence of representational insight in a visual categorization task using a complementary information procedure. J Exp Psychol Anim Behav Process, 32(2), 190–195.
Abstract: Success in tasks requiring categorization of pictorial stimuli does not prove that a subject understands what the pictures stand for. The ability to achieve representational insight is by no means a trivial one because it exceeds mere detection of 2-D features present in both the pictorial images and their referents. So far, evidence for such an ability in nonhuman species is weak and inconclusive. Here, the authors report evidence of representational insight in pigeons. After being trained on pictures of incomplete human figures, the birds responded significantly more to pictures of the previously missing parts than to nonrepresentative stimuli, which demonstrates that they actually recognized the pictures' representational content.
|
|
|
Benard, J., Stach, S., & Giurfa, M. (2006). Categorization of visual stimuli in the honeybee Apis mellifera. Anim. Cogn., 9(4), 257–270.
Abstract: Categorization refers to the classification of perceptual input into defined functional groups. We present and discuss evidence suggesting that stimulus categorization can also be found in an invertebrate, the honeybee Apis mellifera, thus underlining the generality across species of this cognitive process. Honeybees show positive transfer of appropriate responding from a trained to a novel set of visual stimuli. Such a transfer was demonstrated for specific isolated features such as symmetry or orientation, but also for assemblies (layouts) of features. Although transfer from training to novel stimuli can be achieved by stimulus generalization of the training stimuli, most of these transfer tests involved clearly distinguishable stimuli for which generalization would be reduced. Though in most cases specific experimental controls such as stimulus balance and discriminability are still required, it seems appropriate to characterize the performance of honeybees as reflecting categorization. Further experiments should address the issue of which categorization theory accounts better for the visual performances of honeybees.
|
|
|
Carroll, J., Murphy, C. J., Neitz, M., Hoeve, J. N., & Neitz, J. (2001). Photopigment basis for dichromatic color vision in the horse. J Vis, 1(2), 80–87.
Abstract: Horses, like other ungulates, are active in the day, at dusk, dawn, and night; and, they have eyes designed to have both high sensitivity for vision in dim light and good visual acuity under higher light levels (Walls, 1942). Typically, daytime activity is associated with the presence of multiple cone classes and color-vision capacity (Jacobs, 1993). Previous studies in other ungulates, such as pigs, goats, cows, sheep and deer, have shown that they have two spectrally different cone types, and hence, at least the photopigment basis for dichromatic color vision (Neitz & Jacobs, 1989; Jacobs, Deegan II, Neitz, Murphy, Miller, & Marchinton, 1994; Jacobs, Deegan II, & Neitz, 1998). Here, electroretinogram flicker photometry was used to measure the spectral sensitivities of the cones in the domestic horse (Equus caballus). Two distinct spectral mechanisms were identified and are consistent with the presence of a short-wavelength-sensitive (S) and a middle-to-long-wavelength-sensitive (M/L) cone. The spectral sensitivity of the S cone was estimated to have a peak of 428 nm, while the M/L cone had a peak of 539 nm. These two cone types would provide the basis for dichromatic color vision consistent with recent results from behavioral testing of horses (Macuda & Timney, 1999; Macuda & Timney, 2000; Timney & Macuda, 2001). The spectral peak of the M/L cone photopigment measured here, in vivo, is similar to that obtained when the gene was sequenced, cloned, and expressed in vitro (Yokoyama & Radlwimmer, 1999). Of the ungulates that have been studied to date, all have the photopigment basis for dichromatic color vision; however, they differ considerably from one another in the spectral tuning of their cone pigments. These differences may represent adaptations to the different visual requirements of different species.
|
|
|
Cole, P. D., & Adamo, S. A. (2005). Cuttlefish (Sepia officinalis: Cephalopoda) hunting behavior and associative learning. Anim. Cogn., 8(1), 27–30.
Abstract: Because most learning studies in cephalopods have been performed on octopods, it remains unclear whether such abilities are specific to octopus, or whether they correlate with having a larger and more centrally organized brain. To investigate associative learning in a different cephalopod, six sexually mature cuttlefish (Sepia officinalis) participated in a counterbalanced, within-subjects, appetitive, classical conditioning procedure. Two plastic spheres (conditioned stimuli, CSs), differing in brightness, were presented sequentially. Presentation of the CS+ was followed 5 s later by a live feeder fish (unconditioned stimulus, US). Cuttlefish began to attack the CS+ with the same type of food-acquisition seizures used to capture the feeder fish. After seven blocks of training (42 presentations of each CS) the difference in seizure probability between CS+ and CS- trials more than doubled; and was found to be significantly higher in late versus early blocks. These results indicate that cuttlefish exhibit autoshaping under some conditions. The possible ecological significance of this type of learning is briefly discussed.
|
|
|
De Boyer Des Roches, A., Richard-Yris, M. - A., Henry, S., Ezzaouia, M., & Hausberger, M. (2008). Laterality and emotions: visual laterality in the domestic horse (Equus caballus) differs with objects' emotional value. Physiol. Behav., 94(3), 487–490.
Abstract: Lateralization of emotions has received great attention in the last decades, both in humans and animals, but little interest has been given to side bias in perceptual processing. Here, we investigated the influence of the emotional valence of stimuli on visual and olfactory explorations by horses, a large mammalian species with two large monocular visual fields and almost complete decussation of optic fibres. We confronted 38 Arab mares to three objects with either a positive, negative or neutral emotional valence (novel object). The results revealed a gradient of exploration of the 3 objects according to their emotional value and a clear asymmetry in visual exploration. When exploring the novel object, mares used preferentially their right eyes, while they showed a slight tendency to use their left eyes for the negative object. No asymmetry was evidenced for the object with the positive valence. A trend for an asymmetry in olfactory investigation was also observed. Our data confirm the role of the left hemisphere in assessing novelty in horses like in many vertebrate species and the possible role of the right hemisphere in processing negative emotional responses. Our findings also suggest the importance of both hemispheres in the processing positive emotions. This study is, to our knowledge, the first to demonstrate clearly that the emotional valence of a stimulus induces a specific visual lateralization pattern.
|
|
|
Hall, C. A., Cassaday, H. J., & Derrington, A. M. (2003). The effect of stimulus height on visual discrimination in horses. J. Anim Sci., 81(7), 1715–1720.
Abstract: This study investigated the effect of stimulus height on the ability of horses to learn a simple visual discrimination task. Eight horses were trained to perform a two-choice, black/white discrimination with stimuli presented at one of two heights: ground level or at a height of 70 cm from the ground. The height at which the stimuli were presented was alternated from one session to the next. All trials within a single session were presented at the same height. The criterion for learning was four consecutive sessions of 70% correct responses. Performance was found to be better when stimuli were presented at ground level with respect to the number of trials taken to reach the criterion (P < 0.05), percentage of correct first choices (P < 0.01), and repeated errors made (P < 0.01). Thus, training horses to carry out tasks of visual discrimination could be enhanced by placing the stimuli on the ground. In addition, the results of the present study suggest that the visual appearance of ground surfaces is an important factor in both horse management and training.
|
|
|
Heschl, A., & Burkart, J. (2006). A new mark test for mirror self-recognition in non-human primates. Primates, 47(3), 187–198.
Abstract: For 30 years Gallup's (Science 167:86-87, 1970) mark test, which consists of confronting a mirror-experienced test animal with its own previously altered mirror image, usually a color mark on forehead, eyebrow or ear, has delivered valuable results about the distribution of visual self-recognition in non-human primates. Chimpanzees, bonobos, orangutans and, less frequently, gorillas can learn to correctly understand the reflection of their body in a mirror. However, the standard version of the mark test is good only for positively proving the existence of self-recognition. Conclusive statements about the lack of self-recognition are more difficult because of the methodological constraints of the test. This situation has led to a persistent controversy about the power of Gallup's original technique. We devised a new variant of the test which permits more unequivocal decisions about both the presence and absence of self-recognition. This new procedure was tested with marmoset monkeys (Callithrix jacchus), following extensive training with mirror-related tasks to facilitate performance in the standard mark test. The results show that a slightly altered mark test with a new marking substance (chocolate cream) can help to reliably discriminate between true negative results, indicating a real lack of ability to recognize oneself in a mirror, from false negative results that are due to methodological particularities of the standard test. Finally, an evolutionary hypothesis is put forward as to why many primates can use a mirror instrumentally – i.e. know how to use it for grasping at hidden objects – while failing in the decisive mark test.
|
|
|
Izumi, A., & Kojima, S. (2004). Matching vocalizations to vocalizing faces in a chimpanzee (Pan troglodytes). Anim. Cogn., 7(3), 179–184.
Abstract: Auditory-visual processing of species-specific vocalizations was investigated in a female chimpanzee named Pan. The basic task was auditory-visual matching-to-sample, where Pan was required to choose the vocalizer from two test movies in response to a chimpanzee's vocalization. In experiment 1, movies of vocalizing and silent faces were paired as the test movies. The results revealed that Pan recognized the status of other chimpanzees whether they vocalized or not. In experiment 2, two different types of vocalizing faces of an identical individual were prepared as the test movies. Pan recognized the correspondence between vocalization types and faces. These results suggested that chimpanzees possess crossmodal representations of their vocalizations, as do humans. Together with the ability of vocal individual recognition, this ability might reflect chimpanzees' profound understanding of the status of other individuals.
|
|
|
Moses, S. N., Villate, C., & Ryan, J. D. (2006). An investigation of learning strategy supporting transitive inference performance in humans compared to other species. Neuropsychologia, 44(8), 1370–1387.
Abstract: Generalizations about neural function are often drawn from non-human animal models to human cognition, however, the assumption of cross-species conservation may sometimes be invalid. Humans may use different strategies mediated by alternative structures, or similar structures may operate differently within the context of the human brain. The transitive inference problem, considered a hallmark of logical reasoning, can be solved by non-human species via associative learning rather than logic. We tested whether humans use similar strategies to other species for transitive inference. Results are crucial for evaluating the validity of widely accepted assumptions of similar neural substrates underlying performance in humans and other animals. Here we show that successful transitive inference in humans is unrelated to use of associative learning strategies and is associated with ability to report the hierarchical relationship among stimuli. Our work stipulates that cross-species generalizations must be interpreted cautiously, since performance on the same task may be mediated by different strategies and/or neural systems.
|
|