|
Crowell-Davis, S. L., & Houpt, K. A. (1985). Coprophagy by foals: effect of age and possible functions. Equine Vet J, 17(1), 17–19.
Abstract: In colts and fillies observed from birth to 24 weeks old, coprophagy occurred from Weeks 1 to 19. Its frequency was greatest during the first two months. Coprophagy was rarely observed in mares and stallions. Foals usually ate the faeces of their mother but were observed to eat their own and those of a stallion and another unrelated mare. Urination by the foal occurred before, during or after 26 per cent of the coprophagy incidents. It is hypothesised that foals may consume faeces in response to a maternal pheromone which signals the presence of deoxycholic acid or other acids which the foal may be deficient in and which it may require for gut immuno-competence myelination of the nervous system. Such a pheromone may also serve to accelerate growth and sexual maturation. Coprophagy may also provide nutrients and introduce normal bacterial flora to the gut.
|
|
|
Howard, R. W., & Blomquist, G. J. (2005). Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol, 50, 371–393.
Abstract: This review covers selected literature from 1982 to the present on some of the ecological, behavioral, and biochemical aspects of hydrocarbon use by insects and other arthropods. Major ecological and behavioral topics are species- and gender-recognition, nestmate recognition, task-specific cues, dominance and fertility cues, chemical mimicry, and primer pheromones. Major biochemical topics include chain length regulation, mechanism of hydrocarbon formation, timing of hydrocarbon synthesis and transport, and biosynthesis of volatile hydrocarbon pheromones of Lepidoptera and Coleoptera. In addition, a section is devoted to future research needs in this rapidly growing area of science.
|
|
|
Neff, B. D., & Sherman, P. W. (2003). Nestling recognition via direct cues by parental male bluegill sunfish ( Lepomis macrochirus). Anim. Cogn., 6(2), 87–92.
Abstract: Parental care can be costly to a parent in terms of both time and energy invested in the young. In species with cuckoldry or brood parasitism not all of the young under a parent's care are necessarily offspring. In such cases, distinguishing between kin and non-kin, and investing only in the former (nepotism), can be advantageous. Bluegill sunfish ( Lepomis macrochirus) are characterized by paternal care and cuckoldry, and care-providing males appear to show nepotistic behaviours. Here, we investigated nestling recognition in bluegill, determining whether parental males can differentiate between young from their own nest (familiar and related) and young from non-neighbouring nests (unfamiliar and unrelated) using (1) visual and chemical cues, and (2) chemical cues only. In the first experiment, wild-caught parental males were presented with samples of eggs or fry (newly hatched eggs) collected from their own nest or a foreign nest and placed on opposite sides of an aquarium. The time these parental males spent associating with each sample, and their “pecking” behaviours (indicating cannibalism), were recorded. Parental males showed no preference between eggs from their own nest and eggs from a non-neighbouring nest, but they preferred to associate with fry from their own nest over foreign fry. There also was a positive relationship between male body size and the time spent associated with fry from their own nest. Parental males pecked at foreign fry more than 5 times as often as fry from their own nest, though this difference was not statistically significant. In the second experiment, fry that were collected from the nest of a wild-caught parental male or a non-neighbouring nest were placed in different containers and the water from each was dripped into opposite ends of an aquarium. The time the male spent on each side was recorded. In this case, parental males spent more time near the source of water conditioned by unrelated fry, but there was a positive relationship between male condition (fat reserves) and the time he spent near the source of water conditioned by fry from his own nest. Results confirm that chemicals cue nestling recognition by parental male bluegill.
|
|
|
Penn, D., & Potts, W. K. (1998). Untrained mice discriminate MHC-determined odors. Physiol. Behav., 64(3), 235–243.
Abstract: PENN, D. AND W. K. POTTS. Untrained mice distinguish MHC-determined odors. PHYSIOL BEHAV 64(3) 235-243, 1998.--Immune recognition occurs when foreign antigens are presented to T-lymphocytes by molecules encoded by the highly polymorphic genes of the major histocompatibility complex (MHC). House mice (Mus musculus) prefer to mate with individuals that have dissimilar MHC genes. Numerous studies indicate that mice recognize MHC identity through chemosensory cues; however, it is unclear whether odor is determined by classical, antigen-presenting MHC loci or closely linked genes. Previous studies have relied on training laboratory mice and rats to distinguish MHC-associated odors, but there are several reasons why training experiments may be inappropriate assays for testing if MHC genes affect odor. The aim of this study was to determine whether classical MHC genes affect individual odors and whether wild-derived mice can detect MHC-associated odors without training. In the first experiment, we found that wild-derived mice can be trained in a Y-maze to detect the odors of mice that differ genetically only in the MHC region. In the second and third experiments, we used a naturalistic habituation assay and found that wild-derived mice can, without training, distinguish the odors of mice that differ genetically only at one classical MHC locus (dm2 mutants).
|
|