|
Brodbeck, D. R. (1997). Picture fragment completion: priming in the pigeon. J Exp Psychol Anim Behav Process, 23(4), 461–468.
Abstract: It has been suggested that the system behind implicit memory in humans is evolutionarily old and that animals should readily show priming. In Experiment 1, a picture fragment completion test was used to test priming in pigeons. After pecking a warning stimulus, pigeons were shown 2 partially obscured pictures from different categories and were always reinforced for choosing a picture from one of the categories. On control trials, the warning stimulus was a picture of some object (not from the S+ or S- category), on study trials the warning stimulus was a picture to be categorized on the next trial, and on test trials the warning stimulus was a randomly chosen picture and the S+ picture was the warning stimulus seen on the previous trial. Categorization was better on study and test trials than on control trials. Experiment 2 ruled out the possibility that the priming effect was caused by the pigeons' responding to familiarity by using warning stimuli from both S+ and S- categories. Experiment 3 investigated the time course of the priming effect.
|
|
|
Cheng, K., & Wignall, A. E. (2006). Honeybees (Apis mellifera) holding on to memories: response competition causes retroactive interference effects. Anim. Cogn., 9(2), 141–150.
Abstract: Five experiments on honeybees examined how the learning of a second task interferes with what was previously learned. Free flying bees were tested for landmark-based memory in variations on a paradigm of retroactive interference. Bees first learned Task 1, were tested on Task 1 (Test 1), then learned Task 2, and were tested again on Task 1 (Test 2). A 60-min delay (waiting in a box) before Test 2 caused no performance decrements. If the two tasks had conflicting response requirements, (e.g., target right of a green landmark in Task 1 and left of a blue landmark in Task 2), then a strong decrement on Test 2 was found (retroactive interference effect). When response competition was minimised during training or testing, however, the decrement on Test 2 was small or nonexistent. The results implicate response competition as a major contributor to the retroactive interference effect. The honeybee seems to hold on to memories; new memories do not wipe out old ones.
|
|
|
Hopkins, W. D., & Washburn, D. A. (2002). Matching visual stimuli on the basis of global and local features by chimpanzees (Pan troglodytes) and rhesus monkeys (Macaca mulatta). Anim. Cogn., 5(1), 27–31.
Abstract: This study was designed to examine whether chimpanzees and monkeys exhibit a global-to-local precedence in the processing of hierarchically organized compound stimuli, as has been reported for humans. Subjects were tested using a sequential matching-to-sample paradigm using stimuli that differed on the basis of their global configuration or local elements, or on both perceptual attributes. Although both species were able to discriminate stimuli on the basis of their global configuration or local elements, the chimpanzees exhibited a global-to-local processing strategy, whereas the rhesus monkeys exhibited a local-to-global processing strategy. The results suggest that perceptual and attentional mechanisms underlying information-processing strategies may account for differences in learning by primates.
|
|
|
Jordan, K. E., & Brannon, E. M. (2006). Weber's Law influences numerical representations in rhesus macaques (Macaca mulatta). Anim. Cogn., 9(3), 159–172.
Abstract: We present the results of two experiments that probe the ability of rhesus macaques to match visual arrays based on number. Three monkeys were first trained on a delayed match-to-sample paradigm (DMTS) to match stimuli on the basis of number and ignore continuous dimensions such as element size, cumulative surface area, and density. Monkeys were then tested in a numerical bisection experiment that required them to indicate whether a sample numerosity was closer to a small or large anchor value. Results indicated that, for two sets of anchor values with the same ratio, the probability of choosing the larger anchor value systematically increased with the sample number and the psychometric functions superimposed. A second experiment employed a numerical DMTS task in which the choice values contained an exact numerical match to the sample and a distracter that varied in number. Both accuracy and reaction time were modulated by the ratio between the correct numerical match and the distracter, as predicted by Weber's Law.
|
|
|
Parr, L. A. (2004). Perceptual biases for multimodal cues in chimpanzee (Pan troglodytes) affect recognition. Anim. Cogn., 7(3), 171–178.
Abstract: The ability of organisms to discriminate social signals, such as affective displays, using different sensory modalities is important for social communication. However, a major problem for understanding the evolution and integration of multimodal signals is determining how humans and animals attend to different sensory modalities, and these different modalities contribute to the perception and categorization of social signals. Using a matching-to-sample procedure, chimpanzees discriminated videos of conspecifics' facial expressions that contained only auditory or only visual cues by selecting one of two facial expression photographs that matched the expression category represented by the sample. Other videos were edited to contain incongruent sensory cues, i.e., visual features of one expression but auditory features of another. In these cases, subjects were free to select the expression that matched either the auditory or visual modality, whichever was more salient for that expression type. Results showed that chimpanzees were able to discriminate facial expressions using only auditory or visual cues, and when these modalities were mixed. However, in these latter trials, depending on the expression category, clear preferences for either the visual or auditory modality emerged. Pant-hoots and play faces were discriminated preferentially using the auditory modality, while screams were discriminated preferentially using the visual modality. Therefore, depending on the type of expressive display, the auditory and visual modalities were differentially salient in ways that appear consistent with the ethological importance of that display's social function.
|
|
|
Parr, L. A., Winslow, J. T., Hopkins, W. D., & de Waal, F. B. (2000). Recognizing facial cues: individual discrimination by chimpanzees (Pan troglodytes) and rhesus monkeys (Macaca mulatta). J Comp Psychol, 114(1), 47–60.
Abstract: Faces are one of the most salient classes of stimuli involved in social communication. Three experiments compared face-recognition abilities in chimpanzees (Pan troglodytes) and rhesus monkeys (Macaca mulatta). In the face-matching task, the chimpanzees matched identical photographs of conspecifics' faces on Trial 1, and the rhesus monkeys did the same after 4 generalization trials. In the individual-recognition task, the chimpanzees matched 2 different photographs of the same individual after 2 trials, and the rhesus monkeys generalized in fewer than 6 trials. The feature-masking task showed that the eyes were the most important cue for individual recognition. Thus, chimpanzees and rhesus monkeys are able to use facial cues to discriminate unfamiliar conspecifics. Although the rhesus monkeys required many trials to learn the tasks, this is not evidence that faces are not as important social stimuli for them as for the chimpanzees.
|
|
|
Watanabe, S., & Troje, N. F. (2006). Towards a “virtual pigeon”: a new technique for investigating avian social perception. Anim. Cogn., 9(4), 271–279.
Abstract: The purpose of the present study is to examine the applicability of a computer-generated, virtual animal to study animal cognition. Pigeons were trained to discriminate between movies of a real pigeon and a rat. Then, they were tested with movies of the computer-generated (CG) pigeon. Subjects showed generalization to the CG pigeon, however, they also responded to modified versions in which the CG pigeon was showing impossible movement, namely hopping and walking without its head bobbing. Hence, the pigeons did not attend to these particular details of the display. When they were trained to discriminate between the normal and the modified version of the CG pigeon, they were able to learn the discrimination. The results of an additional partial occlusion test suggest that the subjects used head movement as a cue for the usual vs. unusual CG pigeon discrimination.
|
|