|
Branson, N. J., & Rogers, L. J. (2006). Relationship between paw preference strength and noise phobia in Canis familiaris. J. Comp. Psychol., 120(3), 176–183.
Abstract: The authors investigated the relationship between degree of lateralization and noise phobia in 48 domestic dogs (Canis familiaris) by scoring paw preference to hold a food object and relating it to reactivity to the sounds of thunderstorms and fireworks, measured by playback and a questionnaire. The dogs without a significant paw preference were significantly more reactive to the sounds than the dogs with either a left-paw or right-paw preference. Intense reactivity, therefore, is associated with a weaker strength of cerebral lateralization. The authors note the similarity between their finding and the weaker hand preferences shown in humans suffering extreme levels of anxiety and suggest neural mechanisms that may be involved. (PsycINFO Database Record (c) 2010 APA, all rights reserved)
|
|
|
Quaranta, A., Siniscalchi, M., Frate, A., & Vallortigara, G. (2004). Paw preference in dogs: relations between lateralised behaviour and immunity. Behavioural Brain Research, 153(2), 521–525.
Abstract: Paw use in a task consisting of the removal of a piece of adhesive paper from the snout was investigated in 80 mongrel and pure-bred domestic dogs (Canis familiaris). Population lateralisation was observed, but in opposite directions in the two sexes (animals were not desexed): males preferentially used their left paw, females their right paw. The relationship between immune function and paw preference was then investigated. Some immune parameters (total number of white blood cells including lymphocytes, granulocytes and monocytes; leukocyte formula; total proteins; γ-globulins) were investigated in a sample of left-pawed (n=6), right-pawed (n=6) and ambidextrous (n=6) dogs. The results showed that the percentage of lymphocytes was higher in left-pawed than in right-pawed and ambidextrous dogs, whereas granulocytes percentage was lower in left-pawed than in right-pawed and ambidextrous dogs. Moreover, total number of lymphocytes cells was higher in left-pawed than in right-pawed and ambidextrous dogs, whereas the number of γ-globulins was lower in left-pawed than in right-pawed and ambidextrous dogs. These findings represent the first evidence that brain asymmetry modulates immune responses in dogs.
|
|
|
Siniscalchi, M., Sasso, R., Pepe, A. M., Dimatteo, S., Vallortigara, G., & Quaranta, A. (2010). Catecholamine plasma levels following immune stimulation with rabies vaccine in dogs selected for their paw preferences. Neuroscience Letters, 476(3), 142–145.
Abstract: Epinephrine and norepinephrine plasma levels were assessed in dogs in relation to paw preference following an immune challenge with rabies vaccine. The results showed that both catecholamines increased after the vaccine administration, confirming the main role of the sympathetic nervous system in the modulation activity between the brain and the immune system. Moreover, ambidextrous dogs showed a significantly higher increase of epinephrine levels 8 days after immunization with respect to right- and left-pawed dogs, suggesting that the biological activity of this molecule could be key for a different immune response with regard to laterality.
|
|
|
Tomkins, L. M., McGreevy, P. D., & Branson, N. J. (2010). Lack of standardization in reporting motor laterality in the domestic dog (Canis familiaris). Journal of Veterinary Behaviour, 5(5), 235–239.
Abstract: Over the past 2 decades, numerous studies have been undertaken to assess motor laterality in the domestic dog. In anticipation of growth in this area of enquiry, we decided to review the literature on canine motor biases to identify any shortcomings, reflect on the lessons to be learned from and offer ways forward for future research into canine laterality. The aim of this review is to (i) summarize motor laterality findings in the dog, (ii) highlight areas lacking in standardization, and (iii) propose necessary criteria for future tests and global reporting protocols. Our review of the literature highlighted the lack of standardization between studies in task selection, sample size, number of behavior scores recorded, and the methods by which motor laterality were classified and reported. This review illustrates the benefits of standardizing methods of motor laterality assessment so that comparisons can be made between the populations sampled. By adopting such an approach, researchers should mutually benefit as motor laterality data could then be compared and subjected to meta-analysis.
|
|
|
Wells, D. L., & Millsopp, S. (2009). Lateralized behaviour in the domestic cat, Felis silvestris catus. Anim. Behav., 78(2), 537–541.
Abstract: Lateralized behaviour in the felids has been subject to little investigation. We examined the paw use of 42 domestic cats on three tasks designed to determine whether the animals performed asymmetrical motor behaviour. The influence of the cats' sex and age on their paw preferences was also explored. The distribution of the cats' paw preferences differed significantly between the three tasks. Task 1, the most complex exercise involving retrieval of a food treat from an empty jar, encouraged the most apparent display of lateralized behaviour, with all but one animal showing a strong preference to use either their left or right paw consistently. Tasks 2 (an exercise involving reaching for a toy suspended overhead) and 3 (a challenge involving reaching for a toy moving along the ground) encouraged ambilateral motor performance. Lateralized behaviour was strongly sex related. Male and female cats showed paw preferences at the level of the population, but in opposite directions. Females had a greater preference for using their right paw; males were more inclined to adopt their left paw. Feline age was unrelated to either strength or direction of preferred paw use. Overall, the findings suggest that there are two distinct populations of paw preference in the cat that cluster strongly around the animals' sex. The results also point to a relationship between lateralized behaviour and task complexity. More apparent patterns of lateralized behaviour were evident on more complex manipulatory tasks, hinting at functional brain specialization in this species.
|
|