|
Broad, K. D., Curley, J. P., & Keverne, E. B. (2006). Mother-infant bonding and the evolution of mammalian social relationships. Phil. Trans. Biol. Sci., 361(1476), 2199–2214.
Abstract: A wide variety of maternal, social and sexual bonding strategies have been described across mammalian species, including humans. Many of the neural and hormonal mechanisms that underpin the formation and maintenance of these bonds demonstrate a considerable degree of evolutionary conservation across a representative range of these species. However, there is also a considerable degree of diversity in both the way these mechanisms are activated and in the behavioural responses that result. In the majority of small-brained mammals (including rodents), the formation of a maternal or partner preference bond requires individual recognition by olfactory cues, activation of neural mechanisms concerned with social reward by these cues and gender-specific hormonal priming for behavioural output. With the evolutionary increase of neocortex seen in monkeys and apes, there has been a corresponding increase in the complexity of social relationships and bonding strategies together with a significant redundancy in hormonal priming for motivated behaviour. Olfactory recognition and olfactory inputs to areas of the brain concerned with social reward are downregulated and recognition is based on integration of multimodal sensory cues requiring an expanded neocortex, particularly the association cortex. This emancipation from olfactory and hormonal determinants of bonding has been succeeded by the increased importance of social learning that is necessitated by living in a complex social world and, especially in humans, a world that is dominated by cultural inheritance. © 2006 The Royal Society.
|
|
|
Cheney, D., Seyfarth, R., & Smuts, B. (1986). Social relationships and social cognition in nonhuman primates. Science, 234(4782), 1361–1366.
Abstract: Complex social relationships among nonhuman primates appear to contribute to individual reproductive success. Experiments with and behavioral observations of natural populations suggest that sophisticated cognitive mechanisms may underlie primate social relationships. Similar capacities are usually less apparent in the nonsocial realm, supporting the view that at least some aspects of primate intelligence evolved to solve the challenges of interacting with conspecifics.
|
|
|
Jolly, A. (1998). Pair-bonding, female aggression and the evolution of lemur societies. Folia Primatol (Basel), 69 Suppl 1, 1–13.
Abstract: Lemur societies have been described as convergent with those of anthropoids, including Papio-like female-bonded multi-male groups. Recent research, however, shows at least 5 pair-bonded species among the Lemuridae and Indriidae. Three more, Eulemur mongoz, Eulemur fulvus and Varecia variegata, have societies combining aspects of pairing with aspects of troop life. The best-known female-bonded societies, those of Lemur catta, Propithecus diadema edwardsi and Propithecus verreauxi, may be assemblages of mother-daughter dyads, capable of high aggression towards other females, but derived from more solitary female ancestors, perhaps also living as pairs. The internal structure of such lemur groups differs from the more extensive kin groups of catarrhines. This in turn may relate to the lemurs' level of social intelligence and to lemur female dominance over males.
|
|
|
Lim, M. M., & Young, L. J. (2006). Neuropeptidergic regulation of affiliative behavior and social bonding in animals. Hormon. Behav., 50(4), 506–517.
Abstract: Social relationships are essential for maintaining human mental health, yet little is known about the brain mechanisms involved in the development and maintenance of social bonds. Animal models are powerful tools for investigating the neurobiological mechanisms regulating the cognitive processes leading to the development of social relationships and for potentially extending our understanding of the human condition. In this review, we discuss the roles of the neuropeptides oxytocin and vasopressin in the regulation of social bonding as well as related social behaviors which culminate in the formation of social relationships in animal models. The formation of social bonds is a hierarchical process involving social motivation and approach, the processing of social stimuli and formation of social memories, and the social attachment itself. Oxytocin and vasopressin have been implicated in each of these processes. Specifically, these peptides facilitate social affiliation and parental nurturing behavior, are essential for social recognition in rodents, and are involved in the formation of selective mother-infant bonds in sheep and pair bonds in monogamous voles. The convergence of evidence from these animal studies makes oxytocin and vasopressin attractive candidates for the neural modulation of human social relationships as well as potential therapeutic targets for the treatment of psychiatric disorders associated with disruptions in social behavior, including autism.
|
|