|
Gil, M., Bhatt, R., Picotte, K. B., & Hull, E. M. (2013). Sexual experience increases oxytocin receptor gene expression and protein in the medial preoptic area of the male rat. In Psychoneuroendocrinology (Vol. 38, pp. 1688–1697). Pergamon Press.
Abstract: Oxytocin (OT) promotes social and reproductive behaviors in mammals, and OT deficits may be linked to disordered social behaviors like autism and severe anxiety. Male rat sexual behavior is an excellent model for OT regulation of behavior, as its pattern and neural substrates are well characterized. We previously reported that OT microinjected into the medial preoptic area (MPOA), a major integrative site for male sexual behavior, facilitates copulation in sexually experienced male rats, whereas intra-MPOA injection of an OT antagonist (OTA) inhibits copulation. In the present studies, copulation on the day of sacrifice stimulated OTR mRNA expression in the MPOA, irrespective of previous sexual experience, with the highest levels observed in first-time copulators. In addition, sexually experienced males had higher levels of OTR protein in the MPOA than sexually naïve males and first-time copulators. Finally, intra-MPOA injection of OT facilitated mating in sexually naive males. Others have reported a positive correlation between OT mRNA levels and male sexual behavior. Our studies show that OT in the MPOA facilitates mating in both sexually naive and experienced males, some of the behavioral effects of OT are mediated by the OTR, and sexual experience is associated with increased OTR expression in the MPOA. Taken together, these data suggest a reciprocal interaction between central OT and behavior, in which OT facilitates copulation and copulation stimulates the OT/OTR system in the brain.
|
|
|
Lim, M. M., & Young, L. J. (2006). Neuropeptidergic regulation of affiliative behavior and social bonding in animals. Hormon. Behav., 50(4), 506–517.
Abstract: Social relationships are essential for maintaining human mental health, yet little is known about the brain mechanisms involved in the development and maintenance of social bonds. Animal models are powerful tools for investigating the neurobiological mechanisms regulating the cognitive processes leading to the development of social relationships and for potentially extending our understanding of the human condition. In this review, we discuss the roles of the neuropeptides oxytocin and vasopressin in the regulation of social bonding as well as related social behaviors which culminate in the formation of social relationships in animal models. The formation of social bonds is a hierarchical process involving social motivation and approach, the processing of social stimuli and formation of social memories, and the social attachment itself. Oxytocin and vasopressin have been implicated in each of these processes. Specifically, these peptides facilitate social affiliation and parental nurturing behavior, are essential for social recognition in rodents, and are involved in the formation of selective mother-infant bonds in sheep and pair bonds in monogamous voles. The convergence of evidence from these animal studies makes oxytocin and vasopressin attractive candidates for the neural modulation of human social relationships as well as potential therapeutic targets for the treatment of psychiatric disorders associated with disruptions in social behavior, including autism.
|
|