|
Aureli, F., Preston, S. D., & de Waal, F. B. (1999). Heart rate responses to social interactions in free-moving rhesus macaques (Macaca mulatta): a pilot study. J Comp Psychol, 113(1), 59–65.
Abstract: Heart rate telemetry was explored as a means to access animal emotion during social interactions under naturalistic conditions. Heart rates of 2 middle-ranking adult females living in a large group of rhesus macaques (Macaca mulatta) were recorded along with their behavior. Heart rate changes during 2 types of interactions were investigated, while controlling for the effects of posture and activity. The risk of aggression associated with the approach of a dominant individual was expected to provoke anxiety in the approachee. This prediction was supported by the heart rate increase after such an approach. No increase was found when the approacher was a kin or a subordinate individual. The tension-reduction function of allogrooming was also supported. Heart rate decelerated faster during the receipt of grooming than in matched control periods.
|
|
|
Galloux, P., & Barrey, E. (1997). Components of the total kinetic moment in jumping horses. Equine Vet J Suppl, (23), 41–44.
Abstract: Thirty horses were filmed with a panning camera operating at 50 frames/s as they jumped over a 1.20 x 1.20 m fence. The markers of 9 joints on the horse and 7 joints on the rider were tracked in 2D with the TrackEye system. The centre of gravity and moment of inertia of each segment were calculated using a geometric algorithm and a cylindric model, respectively. The kinetic moment of each part of the horse was calculated after filtering, and resampling of data. This method showed the relative contribution of each body segment to the body overall rotation during the take-off, jump and landing phases. It was found that the trunk, hindlimbs and head-neck had the greatest influence. The coordination between the motion of the body segments allowed the horse to control its angular speed of rotation over the fence. This remained nearly constant during the airborne phase (120 +/- 5 degrees/s). During the airborne phase, the kinetic moment was constant because its value was equal to the moment of the external forces (722 +/- 125 kg x m2/s).
|
|
|
Winkelmayr, B., Peham, C., Fruhwirth, B., Licka, T., & Scheidl, M. (2006). Evaluation of the force acting on the back of the horse with an English saddle and a side saddle at walk, trot and canter. Equine Vet J Suppl, (36), 406–410.
Abstract: REASONS FOR PERFORMING STUDY: Force transmission under an English saddle (ES) at walk, trot and canter is commonly evaluated, but the influence of a side saddle (SS) on the equine back has not been documented. HYPOTHESIS: Force transmission under a SS, with its asymmetric construction, is different from an ES in walk, trot and canter, expressed in maximum overall force (MOF), force in the quarters of the saddle mat, and centre of pressure (COP). The biomechanics of the equine back are different under a SS compared to ES. METHODS: Thirteen horses without clinical signs of back pain ridden in an indoor riding school with both saddles were measured using an electronic saddle sensor pad. Synchronous kinematic measurements were carried out with tracing markers placed along the back in front of (withers, W) and behind the saddle (4th lumbar vertebra, L4). At least 6 motion cycles at walk, trot and canter with both saddles (ES, SS) were measured. Out of the pressure distribution the maximum overall force (MOF) and the location of the centre of pressure (COP) were calculated. RESULTS: Under the SS the centre of pressure was located to the right of the median and slightly caudal compared to the COP under the ES in all gaits. The MOF was significantly different (P<0.01) between saddles. At walk, L4 showed significantly larger (P<0.01) vertical excursions under the ES. Under the SS relative horizontal movement of W was significantly reduced (P<0.01) at trot, and at canter the transversal movement was significantly reduced (P<0.01) . In both trot and canter, no significant differences in the movement of L4 were documented. CONCLUSIONS AND POTENTIAL RELEVANCE: The results demonstrate that the load under a SS creates asymmetric force transmission under the saddle, and also influences back movement. To change the load distribution on the back of horses with potential back pain and as a training variation, a combination of both riding styles is suitable.
|
|