|
Adolphs, R. (2003). Cognitive neuroscience of human social behaviour. Nat Rev Neurosci, 4(3), 165–178.
Abstract: We are an intensely social species--it has been argued that our social nature defines what makes us human, what makes us conscious or what gave us our large brains. As a new field, the social brain sciences are probing the neural underpinnings of social behaviour and have produced a banquet of data that are both tantalizing and deeply puzzling. We are finding new links between emotion and reason, between action and perception, and between representations of other people and ourselves. No less important are the links that are also being established across disciplines to understand social behaviour, as neuroscientists, social psychologists, anthropologists, ethologists and philosophers forge new collaborations.
|
|
|
Broom, M. (2002). A unified model of dominance hierarchy formation and maintenance. J. Theor. Biol., 219(1), 63–72.
Abstract: In many different species it is common for animals to spend large portions of their lives in groups. Such groups need to divide available resources amongst the individuals they contain and this is often achieved by means of a dominance hierarchy. Sometimes hierarchies are stable over a long period of time and new individuals slot into pre-determined positions, but there are many situations where this is not so and a hierarchy is formed out of a group of individuals meeting for the first time. There are several different models both of the formation of such dominance hierarchies and of already existing hierarchies. These models often treat the two phases as entirely separate, whereas in reality, if there is a genuine formation phase to the hierarchy, behaviour in this phase will be governed by the rewards available, which in turn depends upon how the hierarchy operates once it has been formed. This paper describes a method of unifying models of these two distinct phases, assuming that the hierarchy formed is stable. In particular a framework is introduced which allows a variety of different models of each of the two parts to be used in conjunction with each other, thus enabling a wide range of situations to be modelled. Some examples are given to show how this works in practice.
|
|
|
Cattell, R. B., & Korth, B. (1973). The isolation of temperament dimensions in dogs. Behav Biol, 9(1), 15–30.
|
|
|
Cerutti, D. T., & Staddon, J. E. R. (2004). Immediacy versus anticipated delay in the time-left experiment: a test of the cognitive hypothesis. J Exp Psychol Anim Behav Process, 30(1), 45–57.
Abstract: In the time-left experiment (J. Gibbon & R. M. Church, 1981), animals are said to compare an expectation of a fixed delay to food, for one choice, with a decreasing delay expectation for the other, mentally representing both upcoming time to food and the difference between current time and upcoming time (the cognitive hypothesis). The results of 2 experiments support a simpler view: that animals choose according to the immediacies of reinforcement for each response at a time signaled by available time markers (the temporal control hypothesis). It is not necessary to assume that animals can either represent or subtract representations of times to food to explain the results of the time-left experiment.
|
|
|
Cheng, K. (2002). Generalisation: mechanistic and functional explanations. Anim. Cogn., 5(1), 33–40.
Abstract: An overview of mechanistic and functional accounts of stimulus generalisation is given. Mechanistic accounts rely on the process of spreading activation across units representing stimuli. Different models implement the spread in different ways, ranging from diffusion to connectionist networks. A functional account proposed by Shepard analyses the probabilistic structure of the world for invariants. A universal law based on one such invariant claims that under a suitable scaling of the stimulus dimension, generalisation gradients should be approximately exponential in shape. Data from both vertebrates and invertebrates so far uphold Shepard's law. Some data on spatial generalisation in honeybees are presented to illustrate how Shepard's law can be used to determine the metric for combining discrepancies in different stimulus dimensions. The phenomenon of peak shift is discussed. Comments on mechanistic and functional approaches to generalisation are given.
|
|
|
Church, R. M. (1997). Quantitative models of animal learning and cognition. J Exp Psychol Anim Behav Process, 23(4), 379–389.
Abstract: This article reviews the prerequisites for quantitative models of animal learning and cognition, describes the types of models, provides a rationale for the development of such quantitative models, describes criteria for their evaluation, and makes recommendations for the next generation of quantitative models. A modular approach to the development of models is described in which a procedure is considered as a generator of stimuli and a model is considered as a generator of responses. The goal is to develop models that, in combination with many different procedures, produce sequences of times of occurrence of events (stimuli and responses) that are indistinguishable from those produced by the animal under many experimental procedures and data analysis techniques.
|
|
|
de Wall, F. B., & Aureli, F. (1997). Conflict resolution and distress alleviation in monkeys and apes. Ann N Y Acad Sci, 807, 317–328.
Abstract: Research on nonhuman primates has produced compelling evidence for reconciliation and consolation, that is, postconflict contacts that serve to respectively repair social relationships and reassure distressed individuals, such as victims of attack. This has led to a view of conflict and conflict resolution as an integrated part of social relationships, hence determined by social factors and modifiable by the social environment. Implications of this new model of social conflict are discussed along with evidence for behavioral flexibility, the value of cooperation, and the possibility that distress alleviation rests on empathy, a capacity that may be present in chimpanzees and humans but not in most other animals.
|
|
|
Epstein, R. (1985). Animal cognition as the praxist views it. Neurosci Biobehav Rev, 9(4), 623–630.
Abstract: The distinction between psychology and praxics provides a clear answer to the question of animal cognition. As Griffin and others have noted, the kinds of behavioral phenomena that lead psychologists to speak of cognition in humans are also observed in nonhuman animals, and therefore those who are convinced of the legitimacy of psychology should not hesitate to speak of and to attempt to study animal cognition. The behavior of organisms is also a legitimate subject matter, and praxics, the study of behavior, has led to significant advances in our understanding of the kinds of behaviors that lead psychologists to speak of cognition. Praxics is a biological science; the attempt by students of behavior to appropriate psychology has been misguided. Generativity theory is an example of a formal theory of behavior that has proved useful both in the engineering of intelligent performances in nonhuman animals and in the prediction of intelligent performances in humans.
|
|
|
Fischer, J., Cheney, D. L., & Seyfarth, R. M. (2000). Development of infant baboons' responses to graded bark variants. Proc Biol Sci, 267(1459), 2317–2321.
Abstract: We studied the development of infant baboons' (Papio cynocephalus ursinus) responses to conspecific 'barks' in a free-ranging population in the Okavango Delta, Botswana. These barks grade from tonal, harmonically rich calls into calls with a more noisy, harsh structure. Typically, tonal variants are given when the signaller is at risk of losing contact with the group or a particular individual ('contact barks'), whereas harsh variants are given in response to predators ('alarm barks'). We conducted focal observations and playback experiments in which we presented variants of barks recorded from resident adult females. By six months of age, infants reliably discriminated between typical alarm and contact barks and they responded more strongly to intermediate alarm calls than to typical contact barks. Infants of six months and older also recognized their mothers by voice. The ability to discriminate between different call variants developed with increasing age. At two and a half months of age, infants failed to respond at all, whereas at four months they responded irrespective of the call type that was presented. At six months, infants showed adult-like responses by responding strongly to alarm barks but ignoring contact barks. We concluded that infants gradually learn to attach the appropriate meaning to alarm and contact barks.
|
|
|
Hemelrijk, C. K., & Wantia, J. (2005). Individual variation by self-organisation. Neurosci Biobehav Rev, 29(1), 125–136.
Abstract: In this paper, we show that differences in dominance and spatial centrality of individuals in a group may arise through self-organisation. Our instrument is a model, called DomWorld, that represents two traits that are often found in animals, namely grouping and competing. In this model individual differences grow under the following conditions: (1) when the intensity of aggression increases and grouping becomes denser, (2) when the degree of sexual dimorphism in fighting power increases. In this case the differences among females compared to males grow too, (3) when, upon encountering another individual, the tendency to attack is 'obligate' and not conditional, namely 'sensitive to risks'. Results resemble phenomena described for societies of primates, mice, birds and pigs.
|
|