|
Branchi, I., Bichler, Z., Berger-Sweeney, J., & Ricceri, L. (2003). Animal models of mental retardation: from gene to cognitive function. Neurosci Biobehav Rev, 27(1-2), 141–153.
Abstract: About 2-3% of all children are affected by mental retardation, and genetic conditions rank among the leading causes of mental retardation. Alterations in the information encoded by genes that regulate critical steps of brain development can disrupt the normal course of development, and have profound consequences on mental processes. Genetically modified mouse models have helped to elucidate the contribution of specific gene alterations and gene-environment interactions to the phenotype of several forms of mental retardation. Mouse models of several neurodevelopmental pathologies, such as Down and Rett syndromes and X-linked forms of mental retardation, have been developed. Because behavior is the ultimate output of brain, behavioral phenotyping of these models provides functional information that may not be detectable using molecular, cellular or histological evaluations. In particular, the study of ontogeny of behavior is recommended in mouse models of disorders having a developmental onset. Identifying the role of specific genes in neuropathologies provides a framework in which to understand key stages of human brain development, and provides a target for potential therapeutic intervention.
|
|
|
Cowley, J. J., & Griesel, R. D. (1966). The effect on growth and behaviour of rehabilitating first and second generation low protein rats. Anim. Behav., 14(4), 506–517.
|
|
|
McClearn, G. E. (1971). Behavioral genetics. Behav Sci, 16(1), 64–81.
|
|
|
Morley, K. I., & Montgomery, G. W. (2001). The genetics of cognitive processes: candidate genes in humans and animals. Behav Genet, 31(6), 511–531.
Abstract: It has been hypothesized that numerous genes contribute to individual variation in human cognition. An extensive search of the scientific literature was undertaken to identify candidate genes which might contribute to this complex trait. A list of over 150 candidate genes that may influence some aspect of cognition was compiled. Some genes are particularly strong candidates based on evidence for involvement in cognitive processes in humans, mice, and Drosophila melanogaster. This survey confirms that many genes are associated with cognitive variation and highlights the potential importance of animal models in the study of human cognition.
|
|