|
Cheng, K., & Wignall, A. E. (2006). Honeybees (Apis mellifera) holding on to memories: response competition causes retroactive interference effects. Anim. Cogn., 9(2), 141–150.
Abstract: Five experiments on honeybees examined how the learning of a second task interferes with what was previously learned. Free flying bees were tested for landmark-based memory in variations on a paradigm of retroactive interference. Bees first learned Task 1, were tested on Task 1 (Test 1), then learned Task 2, and were tested again on Task 1 (Test 2). A 60-min delay (waiting in a box) before Test 2 caused no performance decrements. If the two tasks had conflicting response requirements, (e.g., target right of a green landmark in Task 1 and left of a blue landmark in Task 2), then a strong decrement on Test 2 was found (retroactive interference effect). When response competition was minimised during training or testing, however, the decrement on Test 2 was small or nonexistent. The results implicate response competition as a major contributor to the retroactive interference effect. The honeybee seems to hold on to memories; new memories do not wipe out old ones.
|
|
|
Dusek, J. A., & Eichenbaum, H. (1997). The hippocampus and memory for orderly stimulus relations. Proc. Natl. Acad. Sci. U.S.A., 94(13), 7109–7114.
Abstract: Human declarative memory involves a systematic organization of information that supports generalizations and inferences from acquired knowledge. This kind of memory depends on the hippocampal region in humans, but the extent to which animals also have declarative memory, and whether inferential expression of memory depends on the hippocampus in animals, remains a major challenge in cognitive neuroscience. To examine these issues, we used a test of transitive inference pioneered by Piaget to assess capacities for systematic organization of knowledge and logical inference in children. In our adaptation of the test, rats were trained on a set of four overlapping odor discrimination problems that could be encoded either separately or as a single representation of orderly relations among the odor stimuli. Normal rats learned the problems and demonstrated the relational memory organization through appropriate transitive inferences about items not presented together during training. By contrast, after disconnection of the hippocampus from either its cortical or subcortical pathway, rats succeeded in acquiring the separate discrimination problems but did not demonstrate transitive inference, indicating that they had failed to develop or could not inferentially express the orderly organization of the stimulus elements. These findings strongly support the view that the hippocampus mediates a general declarative memory capacity in animals, as it does in humans.
|
|
|
Griffin, D. R. (2001). Animals know more than we used to think (Vol. 98).
|
|
|
Hampton, R. R. (2001). Rhesus monkeys know when they remember. Proc. Natl. Acad. Sci. U.S.A., 98(9), 5359–5362.
Abstract: Humans are consciously aware of some memories and can make verbal reports about these memories. Other memories cannot be brought to consciousness, even though they influence behavior. This conspicuous difference in access to memories is central in taxonomies of human memory systems but has been difficult to document in animal studies, suggesting that some forms of memory may be unique to humans. Here I show that rhesus macaque monkeys can report the presence or absence of memory. Although it is probably impossible to document subjective, conscious properties of memory in nonverbal animals, this result objectively demonstrates an important functional parallel with human conscious memory. Animals able to discern the presence and absence of memory should improve accuracy if allowed to decline memory tests when they have forgotten, and should decline tests most frequently when memory is attenuated experimentally. One of two monkeys examined unequivocally met these criteria under all test conditions, whereas the second monkey met them in all but one case. Probe tests were used to rule out “cueing” by a wide variety of environmental and behavioral stimuli, leaving detection of the absence of memory per se as the most likely mechanism underlying the monkeys' abilities to selectively decline memory tests when they had forgotten.
|
|
|
Healy, S. D., Braham, S. R., & Braithwaite, V. A. (1999). Spatial working memory in rats: no differences between the sexes. Proc Biol Sci, 266(1435), 2303–2308.
Abstract: In a number of mammalian species, males appear to have superior spatial abilities to females. The favoured explanations for this cognitive difference are hormonal, with higher testosterone levels in males than females leading to better spatial performance, and evolutionary, where sexual selection has favoured males with increased spatial abilities for either better navigational skills in hunting or to enable an increased territory size. However, an alternative explanation for this sex difference focuses on the role of varying levels of oestrogen in females in spatial cognition (the 'fertility and parental care' hypothesis). One possibility is that varying oestrogen levels result in variation in spatial learning and memory so that, when tested across the oestrous cycle, females perform as well as males on days of low oestrogen but more poorly on days of high oestrogen. If day in the oestrous cycle is not taken into account then, across an experiment, any sex differences found would always produce male superiority. We used a spatial working memory task in a Morris water maze to test the spatial learning and memory abilities of male and female rats. The rats were tested across a number of consecutive days during which the females went through four oestrous cycles. We found no overall sex differences in latencies to reach a submerged platform in a Morris water maze but, on the day of oestrus (low oestrogen), females took an extra swim to learn the platform's location (a 100% increase over the other days in the cycle). Female swim speed also varied across the oestrous cycle but females were no less active on the day of oestrus. These results oppose the predictions of the fertility and parental care hypothesis.
|
|
|
Hodgson, Z. G., & Healy, S. D. (2005). Preference for spatial cues in a non-storing songbird species. Anim. Cogn., 8(3), 211–214.
Abstract: Male mammals typically outperform their conspecific females on spatial tasks. A sex difference in cues used to solve the task could underlie this performance difference as spatial ability is reliant on appropriate cue use. Although comparative studies of memory in food-storing and non-storing birds have examined species differences in cue preference, few studies have investigated differences in cue use within a species. In this study, we used a one-trial associative food-finding task to test for sex differences in cue use in the great tit, Parus major. Birds were trained to locate a food reward hidden in a well covered by a coloured cloth. To determine whether the colour of the cloth or the location of the well was learned during training, the birds were presented with three wells in the test phase: one in the original location, but covered by a cloth of a novel colour, a second in a new location covered with the original cloth and a third in a new location covered by a differently coloured cloth. Both sexes preferentially visited the well in the training location rather than either alternative. As great tits prefer colour cues over spatial cues in one-trial associative conditioning tasks, cue preference appears to be related to the task type rather than being species dependent.
|
|
|
Matsushima, T., Izawa, E. - I., Aoki, N., & Yanagihara, S. (2003). The mind through chick eyes: memory, cognition and anticipation. Zoolog Sci, 20(4), 395–408.
Abstract: To understand the animal mind, we have to reconstruct how animals recognize the external world through their own eyes. For the reconstruction to be realistic, explanations must be made both in their proximate causes (brain mechanisms) as well as ultimate causes (evolutionary backgrounds). Here, we review recent advances in the behavioral, psychological, and system-neuroscience studies accomplished using the domestic chick as subjects. Diverse behavioral paradigms are compared (such as filial imprinting, sexual imprinting, one-trial passive avoidance learning, and reinforcement operant conditioning) in their behavioral characterizations (development, sensory and motor aspects of functions, fitness gains) and relevant brain mechanisms. We will stress that common brain regions are shared by these distinct paradigms, particularly those in the ventral telencephalic structures such as AIv (in the archistriatum) and LPO (in the medial striatum). Neuronal ensembles in these regions could code the chick's anticipation for forthcoming events, particularly the quality/quantity and the temporal proximity of rewards. Without the internal representation of the anticipated proximity in LPO, behavioral tolerance will be lost, and the chick makes impulsive choice for a less optimized option. Functional roles of these regions proved compatible with their anatomical counterparts in the mammalian brain, thus suggesting that the neural systems linking between the memorized past and the anticipated future have remained highly conservative through the evolution of the amniotic vertebrates during the last 300 million years. With the conservative nature in mind, research efforts should be oriented toward a unifying theory, which could explain behavioral deviations from optimized foraging, such as “naive curiosity,” “contra-freeloading,” “Concorde fallacy,” and “altruism.”
|
|
|
Mettke-Hofmann, C., & Gwinner, E. (2003). Long-term memory for a life on the move. Proc. Natl. Acad. Sci. U.S.A., 100(10), 5863–5866.
Abstract: Evidence is accumulating that cognitive abilities are shaped by the specific ecological conditions to which animals are exposed. Long-distance migratory birds may provide a striking example of this. Field observations have shown that, at least in some species, a substantial proportion of individuals return to the same breeding, wintering, and stopover sites in successive years. This observation suggests that migrants have evolved special cognitive abilities that enable them to accomplish these feats. Here we show that memory of a particular feeding site persisted for at least 12 months in a long-distance migrant, whereas a closely related nonmigrant could remember such a site for only 2 weeks. Thus, it seems that the migratory lifestyle has influenced the learning and memorizing capacities of migratory birds. These results build a bridge between field observations suggesting special memorization feats of migratory birds and previous neuroanatomical results from the same two species indicating an increase in relative hippocampal size from the first to the second year of life in the migrant but not in the nonmigrant.
|
|
|
Rapin, V., Poncet, P. A., Burger, D., Mermod, C., & Richard, M. A. (2007). [Measurement of the attention time in the horse]. Schweiz Arch Tierheilkd, 149(2), 77–83.
Abstract: A study carried out on 49 horses showed that it is possible to measure the attention time by operant conditioning. After teaching horses an instrumental task using a signal, we were then able to test their attention time by asking them to prolong it increasingly while setting success and failure criteria. Two tests were performed 3 weeks apart. The 2nd test was feasible without relearning, a proof of memory, and was repeatable, a proof of consistency in the attention time. A significant difference was observed between the 3 age groups. Young horses often performed very well during the 1st test but their attention dropped in the 2nd test while older horses were more stable with respect to attention and even increased it slightly. The study shows that there are individual differences but it was not possible to prove a significant influence of breed, gender and paternal influence. Consequently, learning appears to be one of the most interesting approaches for evaluating the attention of horses and for observing their behaviour.
|
|
|
Reichmuth Kastak, C., & Schusterman, R. J. (2002). Long-term memory for concepts in a California sea lion ( Zalophus californianus). Anim. Cogn., 5(4), 225–232.
Abstract: An adult California sea lion ( Zalophus californianus) with extensive experience in performing discrimination learning tasks was tested to evaluate her long-term memory for two previously learned concepts. An associative concept, that of equivalence classification, was retested after a retention interval of approximately 1 year. The sea lion had originally shown emergent equivalence classification with nonsimilarity-based classes of stimuli in a simple discrimination repeated-reversal procedure as well as in a matching-to-sample procedure. The 1-year memory test revealed no decrement in classification performance in either procedure. A relational concept, that of generalized identity matching, was retested after approximately 10 years. The sea lion had originally received trial-and-error exemplar training with identity matching-to-sample problems prior to transferring the concept to novel stimulus configurations. In the 10-year memory test, the sea lion immediately and reliably applied the previously established identity concept to familiar and novel sets of matching problems. These are the first reports of long-term conceptual memory in a nonprimate species. The experimental findings are consistent with a variety of observations of sea lions in natural settings, which indicate that natal sites, feeding areas, and individuals may be remembered over long periods of time.
|
|