|
BASHORE, T. L., KEIPER, R., TURNER, J. W. J. R., & KIRKPATRICK J. F. (1990). The accuracy of fixed-wing aerial surveys of feral horses on a coastal barrier island. J. coast. res, 6, 53–56.
|
|
|
Clark, T. B., Peterson, B. V., Whitcomb, R. F., Henegar, R. B., Hackett, K. J., & Tully, J. G. (1984). Spiroplasmas in the Tabanidae. Isr J Med Sci, 20(10), 1002–1005.
Abstract: Spiroplasmas were observed in seven species of the family Tabanidae (horse flies and deer flies). This is the fifth family of the order Diptera now known to harbor spiroplasmas. Noncultivable spiroplasmas were seen in the hemolymph of three species of the genus Tabanus, and cultivable forms were isolated from the guts of six species in three genera. Isolates from T. calens and T. sulcifrons were serologically similar and closely related to a spiroplasma in the lampyrid beetle, Ellychnia corrusca. These three isolates represent a new serogroup. Isolates from Hybomitra lasiophthalma were related to Group IV strains, while those from T. nigrovittatus and Chrysops sp. both represented new serogroups. At least some tabanids probably acquire spiroplasmas from contaminated flower surfaces. The possibility of vertebrate reservoirs for some tabanid spiroplasmas remains an open question.
|
|
|
De Stoppelaire, G. H., Gillespie, T. W., Brock, J. C., & Tobin, G. A. (2004). Use of remote sensing techniques to determine the effects of grazing on vegetation cover and dune elevation at Assateague Island National Seashore: impact of horses. Environ Manage, 34(5), 642–649.
Abstract: The effects of grazing by feral horses on vegetation and dune topography at Assateague Island National Seashore were investigated using color-infrared imagery, lidar surveys, and field measurements. Five pairs of fenced and unfenced plots (300 m2) established in 1993 on sand flats and small dunes with similar elevation, topography, and vegetation cover were used for this study. Color-infrared imagery from 1998 and field measurements from 2001 indicated that there was a significant difference in vegetation cover between the fenced and unfenced plot-pairs over the study period. Fenced plots contained a higher percentage of vegetation cover that was dominated by American beachgrass (Ammophila breviligulata). Lidar surveys from 1997, 1999, and 2000 showed that there were significant differences in elevation and topography between fenced and unfenced plot-pairs. Fenced plots were, on average, 0.63 m higher than unfenced plots, whereas unfenced plots had generally decreased in elevation after establishment in 1993. Results demonstrate that feral horse grazing has had a significant impact on dune formation and has contributed to the erosion of dunes at Assateague Island. The findings suggest that unless the size of the feral horse population is reduced, grazing will continue to foster unnaturally high rates of dune erosion into the future. In order to maintain the natural processes that historically occurred on barrier islands, much larger fenced exclosures would be required to prevent horse grazing.
|
|
|
Keiper, R., & Houpt, K. (1984). Reproduction in feral horses: an eight-year study. Am J Vet Res, 45(5), 991–995.
Abstract: The reproductive rate and foal survival of the free-ranging ponies on Assateague Island National Seashore were studied for 8 years, 1975 to 1982. Most (52%) of the 86 foals were born in May, 13% were born in April, 22.6% in June, 10.4% in July, and less than 1% in August and September. The mean foaling rate was 57.1 +/- 3.9% and the survival rate was 88.3 +/- 3.6%. Forty-eight colts and 55 fillies were born (sex ratio 53% female). Mares less than 3 years old did not foal and the foaling rate of 3-year-old mares was only 23%, that of 4-year-old mares was 46%, that of 5-year-old mares was 53%, and 6-year-old mares was 69%. The relatively poor reproduction rate was believed to be a consequence of the stress of lactating while carrying a foal when forage quality on the island was low. The hypothesis was supported by the higher reproductive rate (74.4 +/- 2.4%) of the ponies in the Chincoteague National Wildlife Refuge on the southern part of the island. Their foals are weaned and sold in July each year. Despite the low reproductive rate on Assateague Island National Seashore , the number of ponies increased from 43 to 80, a 90% increase in the 8-year period or greater than 10%/yr. There were 24 deaths and 8 dispersals from the study area.
|
|
|
Kirkpatrick, J. F., & Turner, A. (2003). Absence of effects from immunocontraception on seasonal birth patterns and foal survival among barrier island wild horses. J Appl Anim Welf Sci, 6(4), 301–308.
Abstract: Despite a large body of safety data, concern exists that porcine zonae pellucidae (PZP) immunocontraception--used to manage wild horse populations--may cause out-of-season births with resulting foal mortality. Our study at Assateague, Maryland indicated the effects of immunocontraception on season of birth and foal survival between 1990 and 2002 on wild horses from Assateague Island. Among 91 mares never treated, 69 (75.8%) of foals were born in April, May, and June (in season). Among 77 treated mares, 50 (64.9%) were born in season. Of 29 mares foaling within 1 year after treatment (contraceptive failures), 20 (68.9%) were born in season. Of 48 mares treated for greater than 2 years then withdrawn from treatment, 30 (62.5%) of 48 foals were born in season. There were no significant differences (p <.05) between either treatment group or untreated mares. Survival did not differ significantly among foals born in or out of season or among foals born to treated or untreated mares. Data indicate a lack of effect of PZP contraception on season of birth or foal survival on barrier island habitats.
|
|
|
Walker, M. L., & Becklund, W. W. (1971). Occurrence of a cattle eyeworm, Thelazia gulosa (Nematoda: Thelaziidae), in an imported giraffe in California and T. lacrymalis in a native horse in Maryland. J Parasitol, 57(6), 1362–1363.
|
|