|
Austin, N. P., & Rogers, L. J. (2012). Limb preferences and lateralization of aggression, reactivity and vigilance in feral horses, Equus caballus. Anim. Behav., 83(1), 239–247.
Abstract: Observational field studies were conducted on two remote populations of feral horses in Australia to determine whether lateralization is a characteristic of Equus caballus as a species or results from handling by humans. Group 1 had been feral for two to five generations and Group 2 for 10–20 generations. In both groups, left-side biases were present during agonistic interactions and in reactivity and vigilance. Therefore, as in other vertebrates, the right hemisphere appears to be specialized to control agonistic behaviour and responses to potential threats. The leftwards bias was stronger in measures of behaviour involving more aggression and reactivity. Preferences to place one forelimb in front of the other during grazing were also determined. No population bias of forelimb preference was found, suggesting that such limb preferences present in domestic horses may be entrained. Since stronger individual limb preferences were found in immature than in adult feral horses, limb preference may be modified by maturation or experience in the natural habitat. Stronger limb preference was associated significantly with elevated attention to the environment but only in younger feral horses. No sex differences in lateralization were found. The findings are evidence that horses show visual lateralization, as in other vertebrates, not dependent on handling by humans. Limb preference during grazing, by contrast, does appear to depend on experience.
|
|
|
Austin, N. P., & Rogers, L. J. (2014). Lateralization of agonistic and vigilance responses in Przewalski horses (Equus przewalskii). Applied Animal Behaviour Science, 151, 43–50.
Abstract: tEye and limb preferences were scored in the closest undomesticated relative of Equuscaballus using the same methods as used previously to study laterality in feral horses.Observations were made of 33 Przewalski horses (Equus ferus przewalskii) (male N = 20,female N = 13) living under natural social conditions on a large reserve in France. Signifi-cant left-eye/side biases were found in agonistic interactions within harem bands (M ± SEbias to left 58% ± 0.01 for threats, P < 0.001; 68% ± 0.05 for attacks; P < 0.001) and in stallionfights (threats, 52% ± 0.01 left, P < 0.001; attacks, 63% ± 0.02 left, P < 0.001): as many as 80%of the horses were significantly lateralized in attack responses within harem bands. Lat-erality of vigilance was measured as lifting up the head from grazing and turning it to theleft or right side: a directional bias to the left was found (M ± SE 53% ± 0.02 left, P < 0.001).Side bias in reactivity was calculated as the percent of head lifts above the level of thewithers on the left or right side and this was also left side biased (M ± SE 73% ± 0.03 left,P < 0.001). These results indicate right-hemisphere specialization for control of aggressionand responses to novelty. The left bias in attack scores within harem bands was strongerin males than females (P = 0.024) and in immature than adult horses (P = 0.032). Immaturehorses were also more strongly lateralized than adults in vigilance scores (P = 0.022), whichmay suggest that experience reduces these side biases. Our results show that Przewalskihorses exhibit left eye preferences, as do feral horses, and do so even more strongly thanferal horses. Considering feral and Przewalski horses together, we deduce that ancestralhorses had similar lateral biases. Also similar to feral horses, the Przewalski horses showedno significant forelimb preference at the group level or in the majority of horses at theindividual level, confirming the hypothesis that previously reported limb preferences indomestic breeds are entrained or generated by breed-specific selection.
|
|
|
McGreevy, P. D., & Rogers, L. J. (2005). Motor and sensory laterality in thoroughbred horses. Appl. Anim. Behav. Sci., 92(4), 337–352.
Abstract: We investigated lateralisation in horses because it is likely to be important in training and athletic performance. Thoroughbred horses (n = 106) were observed every 60 s for 2 h, when they were at pasture, and the position of the forelimbs in relation to one another was recorded. There was a population bias skewed to standing with the left forelimb advanced over the right (i.e. directional lateralisation). Using the first 50 observations, the distribution of preferences was 43 significantly left, 10 significantly right with 53 being non-significant (i.e. ambidextextrous). The strength of motor bias increased with age, suggesting maturation or an influence of training. The horses were also presented with an olfactory stimulus (stallion faeces) to score the tendency to use one nostril rather than the other. A significant preference to use the right nostril first was shown in horses under 4 years of age (n = 61) but not in older horses. Of the 157 horses tested for nostril bias, 76 had been assessed for motor bias and so were used for analysis of the relationship between laterality in the two modalities. There was no significant relationship between direction of foreleg motor bias and first nostril used, total number of inhalations or laterality index of nostril use. The absence of a correlation between laterality of nostril use and motor bias indicates that lateralisation of the equine brain occurs on at least two levels of neural organisation--sensory and motor--a finding that is consistent with other examples of lateralisation in species that have been examined in more detail.
|
|
|
Rogers, L. J. (2010). Relevance of brain and behavioural lateralization to animal welfare. Appl. Anim. Behav. Sci., 127(1-2), 1–11.
Abstract: The left and right sides of the brain are specialised to process information in different ways and to control different categories of behaviour. Research on a range of species has shown that the left hemisphere controls well-established patterns of behaviour performed in non-stressful situations, whereas the right hemisphere responds to unexpected stimuli and controls escape and other emergency responses. The known functions of each hemisphere are summarised in this paper. Then it is hypothesised that stressed animals rely on predominant use of the right hemisphere, and that a bias to use the right or left hemisphere, respectively, may explain the behavioural differences between animals with a negative cognitive bias and those with a positive cognitive bias. In some species of primates it has been shown that the preferred limb used to pick up food when the animal is in a relaxed state reflects the dominant hemisphere and may be an accessible measure indicating susceptibility to stress and tendency towards positive versus negative cognitive bias. Hence, limb preference might be a useful measure of such tendencies in domesticated species. Some difficulties in determining a relevant measure of limb preference in non-primate species are mentioned, followed by the suggestion that eye preferences for viewing certain stimuli may be a useful measure in species with laterally placed eyes. Finally, effects of experience on the development of hemispheric dominance are discussed, leading to a suggestion that the welfare of domestic animals may be enhanced by ensuring development of left hemisphere dominance (e.g. by exposing chick embryos to light) and by shifting right to left hemisphere dominance in animals with negative cognitive bias.
|
|
|
Rogers, L. J. (2017). A Matter of Degree: Strength of Brain Asymmetry and Behaviour. Symmetry, 9(4).
Abstract: Research on a growing number of vertebrate species has shown that the left and right sides of the brain process information in different ways and that lateralized brain function is expressed in both specific and broad aspects of behaviour. This paper reviews the available evidence relating strength of lateralization to behavioural/cognitive performance. It begins by considering the relationship between limb preference and behaviour in humans and primates from the perspectives of direction and strength of lateralization. In birds, eye preference is used as a reflection of brain asymmetry and the strength of this asymmetry is associated with behaviour important for survival (e.g., visual discrimination of food from non-food and performance of two tasks in parallel). The same applies to studies on aquatic species, mainly fish but also tadpoles, in which strength of lateralization has been assessed as eye preferences or turning biases. Overall, the empirical evidence across vertebrate species points to the conclusion that stronger lateralization is advantageous in a wide range of contexts. Brief discussion of interhemispheric communication follows together with discussion of experiments that examined the effects of sectioning pathways connecting the left and right sides of the brain, or of preventing the development of these left-right connections. The conclusion reached is that degree of functional lateralization affects behaviour in quite similar ways across vertebrate species. Although the direction of lateralization is also important, in many situations strength of lateralization matters more. Finally, possible interactions between asymmetry in different sensory modalities is considered.
|
|
|
Siniscalchi, M., Padalino, B., Lusito, R., & Quaranta, A. (2014). Is the left forelimb preference indicative of a stressful situation in horses? Behav. Process., 107, 61–67.
Abstract: Abstract Evidence for behavioural and brain lateralisation is now widespread among the animal kingdom; lateralisation of limb use (pawedness) occurs in several mammals including both feral and domestic horses. We investigated limb preferences in 14 Quarter Horse during different motor tasks (walking, stepping on and off a step, truck loading and unloading). Population lateralisation was observed in two tasks: horses preferentially used their left forelimb during truck loading and stepping off a step. The results also revealed that horses showed higher scores for anxious behaviours during truck loading suggesting that the use of the left forelimb in this task may reflect the main role of the right hemisphere in control of behaviour during stressful situation.
|
|