|
Alexander, F., & Collett, R. A. (1974). Pethidine in the horse. Res Vet Sci, 17(1), 136–137.
|
|
|
Alexander, F., & Collett, R. A. (1974). Proceedings: Some observations on the pharmacokinetics of trimethoprim in the horse. Br J Pharmacol, 52(1), 142p.
|
|
|
Berger, J. (1986). Wild horses of the Great Basin. Chicago: University of Chicago Press.
Abstract: Describes the behavior of wild horses living in the Great Basin Desert of Nevada and discusses the role of the horses in the area's ecology
|
|
|
Berger, J. (1986). Wild Horses of the Great Basin: Social Competition and Population Size. Chicago: University of Chicago Press.
Abstract: Editorial Reviews
From Library Journal
Berger begins this scholarly and absorbing treatise by discussing the natural history of the horse in general. Then, on the basis of several years of field work, he describes and details the behavior and ecology of the wild horses in the Great Basin Desert of Nevada. The purpose of the book is not, however, merely to describe natural history, but also to test quantitatively several basic ecological hypotheses. Berger has done both well, and his book will be a major source of information on North American wild horses for years to come. The book will interest specialists and graduate students primarily. It may also appeal to anyone with a strong interest in wild horses, and the remote and starkly beautiful Great Basin. Nicholas J. Volkman, Point Reyes Bird Observatory, Stinson Beach, Cal.
Copyright 1986 Reed Business Information, Inc.
|
|
|
Bermudez, J. L. (1996). The moral significance of birth. Ethics, 106(2), 378–403.
|
|
|
Boyce, P. N., & McLoughlin, P. D. (2021). Ecological Interactions Involving Feral Horses and Predators: Review with Implications for Biodiversity Conservation. Jour. Wild. Mgmt., n/a(n/a).
Abstract: ABSTRACT For many ecosystems, feral horses are increasingly becoming an important if not dominant component of ungulate biomass and hence influence on community dynamics. Yet we still know little of how horses contribute to key ecological interactions including predator-prey and indirect competitive relationships at a community level. Notably, feral species like horses can exhibit life-history traits that differ from that of native (mainly artiodactyl) herbivore competitors. Artificial selection for traits like increased, early, or extended reproduction that have yet to be reversed by natural selection, coupled with naturally selected differences in anatomy and behavior, in addition to unique management objectives for horses compared to other species, means that the dynamics of feral horse populations are not likely to align with what might be expected of other large herbivores. Unexpected population dynamics and inherent biological asymmetries between native ungulates and feral horses may therefore influence the former via direct competition for shared resources and through enemy-mediated interactions like apparent competition. In several localities feral horses now co-exist with multiple native prey species, some of which are in decline or are species at risk. Compounding risks to native species from direct or indirect competitive exclusion by horses is the unique nature and socio-political context of feral horse management, which tends towards allowing horse populations to be limited largely by natural, density-dependent factors. We summarize the inherent asymmetries between feral horse biology and that of other ungulate prey species with consequences for conservation, focusing on predator-prey and emerging indirect interactions in multi-prey systems, and highlight future directions to address key knowledge gaps in our understanding of how feral horses may now be contributing to the (re)structuring of food webs. Observations of patterns of rapid growth and decline, and associated skews in sex ratios of feral horse populations, indicate a heightened potential for indirect interactions among large ungulate prey species, where there is a prevalence of feral horses as preferred prey, particularly where native prey are declining. In places like western North America, we expect predator-prey interactions involving feral horses to become an increasingly important factor in the conservation of wildlife. This applies not only to economically or culturally important game species but also at-risk species, both predators (e.g., wolves [Canis lupus], grizzly bears [Ursus arctos]) and prey (e.g., woodland caribou [Rangifer tarandus caribou]), necessitating an ecological understanding of the role of horses in natural environments that goes beyond that of population control. ? 2021 The Wildlife Society.
|
|
|
Burton, A. C., Neilson, E., Moreira, D., Ladle, A., Steenweg, R., Fisher, J. T., et al. (2015). REVIEW: Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. J Appl Ecol, 52(3), 675–685.
Abstract: Summary Reliable assessment of animal populations is a long-standing challenge in wildlife ecology. Technological advances have led to widespread adoption of camera traps (CTs) to survey wildlife distribution, abundance and behaviour. As for any wildlife survey method, camera trapping must contend with sources of sampling error such as imperfect detection. Early applications focused on density estimation of naturally marked species, but there is growing interest in broad-scale CT surveys of unmarked populations and communities. Nevertheless, inferences based on detection indices are controversial, and the suitability of alternatives such as occupancy estimation is debatable. We reviewed 266 CT studies published between 2008 and 2013. We recorded study objectives and methodologies, evaluating the consistency of CT protocols and sampling designs, the extent to which CT surveys considered sampling error, and the linkages between analytical assumptions and species ecology. Nearly two-thirds of studies surveyed more than one species, and a majority used response variables that ignored imperfect detection (e.g. presence?absence, relative abundance). Many studies used opportunistic sampling and did not explicitly report details of sampling design and camera deployment that could affect conclusions. Most studies estimating density used capture?recapture methods on marked species, with spatially explicit methods becoming more prominent. Few studies estimated density for unmarked species, focusing instead on occupancy modelling or measures of relative abundance. While occupancy studies estimated detectability, most did not explicitly define key components of the modelling framework (e.g. a site) or discuss potential violations of model assumptions (e.g. site closure). Studies using relative abundance relied on assumptions of equal detectability, and most did not explicitly define expected relationships between measured responses and underlying ecological processes (e.g. animal abundance and movement). Synthesis and applications. The rapid adoption of camera traps represents an exciting transition in wildlife survey methodology. We remain optimistic about the technology's promise, but call for more explicit consideration of underlying processes of animal abundance, movement and detection by cameras, including more thorough reporting of methodological details and assumptions. Such transparency will facilitate efforts to evaluate and improve the reliability of camera trap surveys, ultimately leading to stronger inferences and helping to meet modern needs for effective ecological inquiry and biodiversity monitoring.
|
|
|
Cartmill, E., & Byrne, R. (2010). Semantics of primate gestures: intentional meanings of orangutan gestures. Anim. Cogn., 13(6), 793-804.
Abstract: Great ape gesture has become a research topic of intense interest, because its intentionality and flexibility suggest strong parallels to human communication. Yet the fundamental question of whether an animal species’ gestures carry specific meanings has hardly been addressed. We set out a systematic approach to studying intentional meaning in the gestural communication of non-humans and apply it to a sample of orangutan gestures. We propose that analysis of meaning should be limited to gestures for which (1) there is strong evidence for intentional production and (2) the recipient’s final reaction matches the presumed goal of the signaller, as determined independently. This produces a set of successful instances of gesture use, which we describe as having goal–outcome matches. In this study, 28 orangutans in three European zoos were observed for 9 months. We distinguished 64 gestures on structural grounds, 40 of which had frequent goal–outcome matches and could therefore be analysed for meaning. These 40 gestures were used predictably to achieve one of 6 social goals: to initiate an affiliative interaction (contact, grooming, or play), request objects, share objects, instigate co-locomotion, cause the partner to move back, or stop an action. Twenty-nine of these gestures were used consistently with a single meaning. We tested our analysis of gesture meaning by examining what gesturers did when the response to their gesture did not match the gesture’s meaning. Subsequent actions of the gesturer were consistent with our assignments of meaning to gestures. We suggest that, despite their contextual flexibility, orangutan gestures are made with the expectation of specific behavioural responses and thus have intentional meanings as well as functional consequences.
|
|
|
Cheung, C., Akiyama, T. E., Ward, J. M., Nicol, C. J., Feigenbaum, L., Vinson, C., et al. (2004). Diminished hepatocellular proliferation in mice humanized for the nuclear receptor peroxisome proliferator-activated receptor alpha. Cancer Res, 64(11), 3849–3854.
Abstract: Lipid-lowering fibrate drugs function as agonists for the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha). Sustained activation of PPARalpha leads to the development of liver tumors in rats and mice. However, humans appear to be resistant to the induction of peroxisome proliferation and the development of liver cancer by fibrate drugs. The molecular basis of this species difference is not known. To examine the mechanism determining species differences in peroxisome proliferator response between mice and humans, a PPARalpha-humanized mouse line was generated in which the human PPARalpha was expressed in liver under control of the tetracycline responsive regulatory system. The PPARalpha-humanized and wild-type mice responded to treatment with the potent PPARalpha ligand Wy-14643 as revealed by induction of genes encoding peroxisomal and mitochondrial fatty acid metabolizing enzymes and resultant decrease of serum triglycerides. However, surprisingly, only the wild-type mice and not the PPARalpha-humanized mice exhibited hepatocellular proliferation as revealed by elevation of cell cycle control genes, increased incorporation of 5-bromo-2'-deoxyuridine into hepatocyte nuclei, and hepatomegaly. These studies establish that following ligand activation, the PPARalpha-mediated pathways controlling lipid metabolism are independent from those controlling the cell proliferation pathways. These findings also suggest that structural differences between human and mouse PPARalpha are responsible for the differential susceptibility to the development of hepatocarcinomas observed after treatment with fibrates. The PPARalpha-humanized mice should serve as models for use in drug development and human risk assessment and to determine the mechanism of hepatocarcinogenesis of peroxisome proliferators.
|
|
|
Dall, S. R. X., Houston, A. I., & McNamara, J. M. (2004). The behavioural ecology of personality: consistent individual differences from an adaptive perspective. Ecol. Letters, 7, 734–739.
Abstract: Individual humans, and members of diverse other species, show consistent differences in
aggressiveness, shyness, sociability and activity. Such intraspecific differences in
behaviour have been widely assumed to be non-adaptive variation surrounding
(possibly) adaptive population-average behaviour. Nevertheless, in keeping with recent
calls to apply Darwinian reasoning to ever-finer scales of biological variation, we sketch
the fundamentals of an adaptive theory of consistent individual differences in behaviour.
Our thesis is based on the notion that such .personality differences. can be selected for if
fitness payoffs are dependent on both the frequencies with which competing strategies
are played and an individual`s behavioural history. To this end, we review existing models
that illustrate this and propose a game theoretic approach to analyzing personality
differences that is both dynamic and state-dependent. Our motivation is to provide
insights into the evolution and maintenance of an apparently common animal trait:
personality, which has far reaching ecological and evolutionary implications.
|
|