|
Adler, L. L., & Adler, H. E. (1977). Ontogeny of observational learning in the dog (Canis familiaris). Dev Psychobiol, 10(3), 267–271.
Abstract: A split-litter technique was used to test observational learning in 4 litters of Miniature Dachshund puppies, 21, 28, 38, and 60 days old at the beginning of the experiment. In one side of a duplicate cage, one puppy of a litter, the demonstrator, learned to pull in a food cart on a runner by means of a ribbon, while another puppy, the observer, watched from an adjacent compartment, separated by a wire screen. Observational learning was demonstrated by the saving in time for the 1st trial when the observer was given the same problem to solve. Maturation, particularly the development of visual function and motor coordination, set a lower age limit for the emergence of observational learning.
|
|
|
Benard, J., Stach, S., & Giurfa, M. (2006). Categorization of visual stimuli in the honeybee Apis mellifera. Anim. Cogn., 9(4), 257–270.
Abstract: Categorization refers to the classification of perceptual input into defined functional groups. We present and discuss evidence suggesting that stimulus categorization can also be found in an invertebrate, the honeybee Apis mellifera, thus underlining the generality across species of this cognitive process. Honeybees show positive transfer of appropriate responding from a trained to a novel set of visual stimuli. Such a transfer was demonstrated for specific isolated features such as symmetry or orientation, but also for assemblies (layouts) of features. Although transfer from training to novel stimuli can be achieved by stimulus generalization of the training stimuli, most of these transfer tests involved clearly distinguishable stimuli for which generalization would be reduced. Though in most cases specific experimental controls such as stimulus balance and discriminability are still required, it seems appropriate to characterize the performance of honeybees as reflecting categorization. Further experiments should address the issue of which categorization theory accounts better for the visual performances of honeybees.
|
|
|
Beran, M. J., Beran, M. M., Harris, E. H., & Washburn, D. A. (2005). Ordinal judgments and summation of nonvisible sets of food items by two chimpanzees and a rhesus macaque. J Exp Psychol Anim Behav Process, 31(3), 351–362.
Abstract: Two chimpanzees and a rhesus macaque rapidly learned the ordinal relations between 5 colors of containers (plastic eggs) when all containers of a given color contained a specific number of identical food items. All 3 animals also performed at high levels when comparing sets of containers with sets of visible food items. This indicates that the animals learned the approximate quantity of food items in containers of a given color. However, all animals failed in a summation task, in which a single container was compared with a set of 2 containers of a lesser individual quantity but a greater combined quantity. This difficulty was not overcome by sequential presentation of containers into opaque receptacles, but performance improved if the quantitative difference between sizes was very large.
|
|
|
Blaisdell, A. P., & Cook, R. G. (2005). Integration of spatial maps in pigeons. Anim. Cogn., 8(1), 7–16.
Abstract: The integration of spatial maps in pigeons was investigated using a spatial analog to sensory preconditioning. The pigeons were tested in an open-field arena in which they had to locate hidden food among a 4x4 grid of gravel-filled cups. In phase 1, the pigeons were exposed to a consistent spatial relationship (vector) between landmark L (a red L-shaped block of wood), landmark T (a blue T-shaped block of wood) and the hidden food goal. In phase 2, the pigeons were then exposed to landmark T with a different spatial vector to the hidden food goal. Following phase 2, pigeons were tested with trials on which they were presented with only landmark L to examine the potential integration of the phase 1 and 2 vectors via their shared common elements. When these test trials were preceded by phase 1 and phase 2 reminder trials, pigeons searched for the goal most often at a location consistent with their integration of the L-->T phase 1 and T-->phase 2 goal vectors. This result indicates that integration of spatial vectors acquired during phases 1 and 2 allowed the pigeons to compute a novel L-->goal vector. This suggests that spatial maps may be enlarged by successively integrating additional spatial information through the linkage of common elements.
|
|
|
Brennan, P. A. (2004). The nose knows who's who: chemosensory individuality and mate recognition in mice. Horm Behav, 46(3), 231–240.
Abstract: Individual recognition is an important component of behaviors, such as mate choice and maternal bonding that are vital for reproductive success. This article highlights recent developments in our understanding of the chemosensory cues and the neural pathways involved in individuality discrimination in rodents. There appear to be several types of chemosensory signal of individuality that are influenced by the highly polymorphic families of major histocompatibility complex (MHC) proteins or major urinary proteins (MUPs). Both have the capability of binding small molecules and may influence the individual profile of these chemosignals in biological fluids such as urine, skin secretions, or saliva. Moreover, these proteins, or peptides associated with them, can be taken up into the vomeronasal organ (VNO) where they can potentially interact directly with the vomeronasal receptors. This is particularly interesting given the expression of major histocompatibility complex Ib proteins by the V2R class of vomeronasal receptor and the highly selective responses of accessory olfactory bulb (AOB) mitral cells to strain identity. These findings are consistent with the role of the vomeronasal system in mediating individual discrimination that allows mate recognition in the context of the pregnancy block effect. This is hypothesized to involve a selective increase in the inhibitory control of mitral cells in the accessory olfactory bulb at the first level of processing of the vomeronasal stimulus.
|
|
|
Brosnan, S. F., & de Waal, F. B. M. (2005). Responses to a simple barter task in chimpanzees, Pan troglodytes. Primates, 46(3), 173–182.
Abstract: Chimpanzees (Pan troglodytes) frequently participate in social exchange involving multiple goods and services of variable value, yet they have not been tested in a formalized situation to see whether they can barter using multiple tokens and rewards. We set up a simple barter economy with two tokens and two associated rewards and tested chimpanzees on their ability to obtain rewards by returning the matching token in situations in which their access to tokens was unlimited or limited. Chimpanzees easily learned to associate value with the tokens, as expected, and did barter, but followed a simple strategy of favoring the higher-value token, regardless of the reward proffered, instead of a more complex but more effective strategy of returning the token that matched the reward. This response is similar to that shown by capuchin monkeys in our previous study. We speculate that this response, while not ideal, may be sufficient to allow for stability of the social exchange system in these primates, and that the importance of social barter to both species may have led to this convergence of strategies.
|
|
|
Chiesa, A. D., Pecchia, T., Tommasi, L., & Vallortigara, G. (2006). Multiple landmarks, the encoding of environmental geometry and the spatial logics of a dual brain. Anim. Cogn., 9(4), 281–293.
Abstract: A series of place learning experiments was carried out in young chicks (Gallus gallus) in order to investigate how the geometry of a landmark array and that of a walled enclosure compete when disoriented animals could rely on both of them to re-orient towards the centre of the enclosure. A square-shaped array (four wooden sticks) was placed in the middle of a square-shaped enclosure, the two structures being concentric. Chicks were trained to ground-scratch to search for food hidden in the centre of the enclosure (and the array). To check for effects of array degradation, one, two, three or all landmarks were removed during test trials. Chicks concentrated their searching activity in the central area of the enclosure, but their accuracy was inversely contingent on the number of landmarks removed; moreover, the landmarks still present within the enclosure appeared to influence the shape of the searching patterns. The reduction in the number of landmarks affected the searching strategy of chicks, suggesting that they had focussed mainly on local cues when landmarks were present within the enclosure. When all the landmarks were removed, chicks searched over a larger area, suggesting an absolute encoding of distances from the local cues and less reliance on the relationships provided by the geometry of the enclosure. Under conditions of monocular vision, chicks tended to rely on different strategies to localize the centre on the basis of the eye (and thus the hemisphere) in use, the left hemisphere attending to details of the environment and the right hemisphere attending to the global shape.
|
|
|
Church, D. L., & Plowright, C. M. S. (2006). Spatial encoding by bumblebees (Bombus impatiens) of a reward within an artificial flower array. Anim. Cogn., 9(2), 131–140.
Abstract: We presented bumblebees a spatial memory task similar to that used with other species (e.g., cats, dogs, and pigeons). In some conditions we allowed for presence of scent marks in addition to placing local and global spatial cues in conflict. Bumblebees (Bombus impatiens) were presented an array of artificial flowers within a flight cage, one flower offering reward (S+), while the others were empty (S-). Bees were tested with empty flowers. In Experiment 1, flowers were either moved at the time of testing or not. Bees returned to the flower in the same absolute position of the S+ (the flower-array-independent (FAI) position), even if it was in the wrong position relative to the S- and even when new flower covers prevented the use of possible scent marks. New flower covers (i.e., without possible scent marks) had the effect of lowering the frequency of probing behavior. In Experiment 2, the colony was moved between training and testing. Again, bees chose the flower in the FAI position of the S+, and not the flower that would be chosen using strictly memory for a flight vector. Together, these experiments show that to locate the S+ bees did not rely on scent marks nor the positions of the S-, though the S- were prominent objects close to the goal. Also, bees selected environmental features to remember the position of the S+ instead of relying upon a purely egocentric point of view. Similarities with honeybees and vertebrates are discussed, as well as possible encoding mechanisms.
|
|
|
Dorrance, B. R., & Zentall, T. R. (2002). Imitation of conditional discriminations in pigeons (Columba livia). J Comp Psychol, 116(3), 277–285.
Abstract: In the present experiments, the 2-action method was used to determine whether pigeons could learn to imitate a conditional discrimination. Demonstrator pigeons (Columba livia) stepped on a treadle in the presence of 1 light and pecked at the treadle in the presence of another light. Demonstration did not seem to affect acquisition of the conditional discrimination (Experiment 1) but did facilitate its reversal of the conditional discrimination (Experiments 2 and 3). The results suggest that pigeons are not only able to learn a specific behavior by observing another pigeon, but they can also learn under which circumstances to perform that behavior. The results have implications for proposed mechanisms of imitation in animals.
|
|
|
Fox, N. A. (2004). Temperament and early experience form social behavior. Ann N Y Acad Sci, 1038, 171–178.
Abstract: Individual differences in the way persons respond to stimulation can have important consequences for their ability to learn and their choice of vocation. Temperament is the study of such individual differences, being thought of as the behavioral style of an individual. Common to all approaches in the study of temperament are the notions that it can be identified in infancy, is fairly stable across development, and influences adult personality. We have identified a specific temperament type in infancy that involves heightened distress to novel and unfamiliar stimuli. Infants who exhibit this temperament are likely, as they get older, to display behavioral inhibition-wariness and heightened vigilance of the unfamiliar-particularly in social situations. Our work has also described the underlying biology of this temperament and has linked it to neural systems supporting fear responses in animals. Children displaying behavioral inhibition are at-risk for behavioral problems related to anxiety and social withdrawal.
|
|