|
Beran, M. J. (2004). Long-term retention of the differential values of Arabic numerals by chimpanzees (Pan troglodytes). Anim. Cogn., 7(2), 86–92.
Abstract: As previously reported (Beran and Rumbaugh, 2001), two chimpanzees used a joystick to collect dots, one-at-a-time, on a computer monitor, and then ended a trial when the number of dots collected was equal to the Arabic numeral presented for the trial. Here, the chimpanzees were presented with the task again after an interval of 6 months and then again after an additional interval of 3.25 years. During each interval, the chimpanzees were not presented with the task, and this allowed an assessment of the extent to which both animals retained the values of each Arabic numeral. Despite lower performance at each retention interval compared to the original study, both chimpanzees performed above chance levels in collecting a quantity of dots equal to the target numeral, one chimpanzee for the numerals 1-7, and the second chimpanzee for the numerals 1-6. For the 3.25-year retention, errors were more dispersed around each target numeral than in the original study, but the chimpanzees' performances again appeared to be based on a continuous representation of magnitude rather than a discrete representation of number. These data provide an experimental demonstration of long-term retention of the differential values of Arabic numerals by chimpanzees.
|
|
|
Bergman, T. J., Beehner, J. C., Cheney, D. L., & Seyfarth, R. M. (2003). Hierarchical classification by rank and kinship in baboons. Science, 302(5648), 1234–1236.
Abstract: Humans routinely classify others according to both their individual attributes, such as social status or wealth, and membership in higher order groups, such as families or castes. They also recognize that people's individual attributes may be influenced and regulated by their group affiliations. It is not known whether such rule-governed, hierarchical classifications are specific to humans or might also occur in nonlinguistic species. Here we show that baboons recognize that a dominance hierarchy can be subdivided into family groups. In playback experiments, baboons respond more strongly to call sequences mimicking dominance rank reversals between families than within families, indicating that they classify others simultaneously according to both individual rank and kinship. The selective pressures imposed by complex societies may therefore have favored cognitive skills that constitute an evolutionary precursor to some components of human cognition.
|
|
|
Cochet, H., & Byrne, R. W. (2013). Evolutionary origins of human handedness: evaluating contrasting hypotheses. Animal Cognition, 16(4), 531–542.
Abstract: Variation in methods and measures, resulting in past dispute over the existence of population handedness in nonhuman great apes, has impeded progress into the origins of human right-handedness and how it relates to the human hallmark of language. Pooling evidence from behavioral studies, neuroimaging and neuroanatomy, we evaluate data on manual and cerebral laterality in humans and other apes engaged in a range of manipulative tasks and in gestural communication. A simplistic human/animal partition is no longer tenable, and we review four (nonexclusive) possible drivers for the origin of population-level right-handedness: skilled manipulative activity, as in tool use; communicative gestures; organizational complexity of action, in particular hierarchical structure; and the role of intentionality in goal-directed action. Fully testing these hypotheses will require developmental and evolutionary evidence as well as modern neuroimaging data.
|
|
|
Cowell, P. E., Fitch, R. H., & Denenberg, V. H. (1999). Laterality in animals: relevance to schizophrenia. Schizophr Bull, 25(1), 41–62.
Abstract: Anomalies in the laterality of numerous neurocognitive dimensions associated with schizophrenia have been documented, but their role in the etiology and early development of the disorder remain unclear. In the study of normative neurobehavioral organization, animal models have shed much light on the mechanisms underlying and the factors affecting adult patterns of both functional and structural asymmetry. Nonhuman species have more recently been used to investigate the environmental, genetic, and neuroendocrine factors associated with developmental language disorders in humans. We propose that the animal models used to study the basis of lateralization in normative development and language disorders such as dyslexia could be modified to investigate lateralized phenomena in schizophrenia.
|
|
|
Dunbar, R. (2003). Evolution of the social brain. Science, 302(5648), 1160–1161.
|
|
|
Farmer-Dougan, V., & Dougan, J. (1999). The Man Who Listens To Behavior: Folk Wisdom And Behavior Analysis From A Real Horse Whisperer. J Exp Anal Behav, 72(1), 139–149.
Abstract: The popular novel and movie The Horse Whisperer are based on the work of several real-life horse
whisperers, the most famous of whom is Monty Roberts. Over the last 50 years, Roberts has developed
a technique for training horses that is both more effective and less aversive than traditional training
techniques. An analysis of Roberts` methods (as described in his book, The Man Who Listens to Horses)
indicates a deep understanding of behavioral principles including positive reinforcement, timeout,
species-specific defense reactions, learned helplessness, and the behavioral analysis of language.
Roberts developed his theory and techniques on the basis of personal experience and folk wisdom,
and not as the result of formal training in behavior analysis. Behavior analysts can clearly learn from
such insightful yet behaviorally incorrect practitioners, just as such practitioners can benefit from
the objective science of behavior analysts.
|
|
|
Gallup, G. G. J. (1985). Do minds exist in species other than our own? Neurosci Biobehav Rev, 9(4), 631–641.
Abstract: An answer to the question of animal awareness depends on evidence, not intuition, anecdote, or debate. This paper examines some of the problems inherent in an analysis of animal awareness, and whether animals might be aware of being aware is offered as a more meaningful distinction. A framework is presented which can be used to make a determination about the extent to which other species have experiences similar to ours based on their ability to make inferences and attributions about mental states in others. The evidence from both humans and animals is consistent with the idea that the capacity to use experience to infer the experience of others is a byproduct of self-awareness.
|
|
|
Gentner, T. Q., Fenn, K. M., Margoliash, D., & Nusbaum, H. C. (2006). Recursive syntactic pattern learning by songbirds. Nature, 440(7088), 1204–1207.
Abstract: Humans regularly produce new utterances that are understood by other members of the same language community. Linguistic theories account for this ability through the use of syntactic rules (or generative grammars) that describe the acceptable structure of utterances. The recursive, hierarchical embedding of language units (for example, words or phrases within shorter sentences) that is part of the ability to construct new utterances minimally requires a 'context-free' grammar that is more complex than the 'finite-state' grammars thought sufficient to specify the structure of all non-human communication signals. Recent hypotheses make the central claim that the capacity for syntactic recursion forms the computational core of a uniquely human language faculty. Here we show that European starlings (Sturnus vulgaris) accurately recognize acoustic patterns defined by a recursive, self-embedding, context-free grammar. They are also able to classify new patterns defined by the grammar and reliably exclude agrammatical patterns. Thus, the capacity to classify sequences from recursive, centre-embedded grammars is not uniquely human. This finding opens a new range of complex syntactic processing mechanisms to physiological investigation.
|
|
|
Krishnan, A., Gandour, J. T., Ananthakrishnan, S., Bidelman, G. M., & Smalt, C. J. (). Functional ear (a)symmetry in brainstem neural activity relevant to encoding of voice pitch: A precursor for hemispheric specialization? Brain and Language, In Press, Corrected Proof.
Abstract: Pitch processing is lateralized to the right hemisphere; linguistic pitch is further mediated by left cortical areas. This experiment investigates whether ear asymmetries vary in brainstem representation of pitch depending on linguistic status. Brainstem frequency-following responses (FFRs) were elicited by monaural stimulation of the left and right ear of 15 native speakers of Mandarin Chinese using two synthetic speech stimuli that differ in linguistic status of tone. One represented a native lexical tone (Tone 2: T2); the other, T2', a nonnative variant in which the pitch contour was a mirror image of T2 with the same starting and ending frequencies. Two 40-ms portions of f0 contours were selected in order to compare two regions (R1, early; R2 late) differing in pitch acceleration rate and perceptual saliency. In R2, linguistic status effects revealed that T2 exhibited a larger degree of FFR rightward ear asymmetry as reflected in f0 amplitude relative to T2'. Relative to midline (ear asymmetry = 0), the only ear asymmetry reaching significance was that favoring left ear stimulation elicited by T2'. By left- and right-ear stimulation separately, FFRs elicited by T2 were larger than T2' in the right ear only. Within T2', FFRs elicited by the earlier region were larger than the later in both ears. Within T2, no significant differences in FFRS were observed between regions in either ear. Collectively, these findings support the idea that origins of cortical processing preferences for perceptually-salient portions of pitch are rooted in early, preattentive stages of processing in the brainstem.
|
|
|
Linton, M. L. (1970). Washoe the chimpanzee. Science, 169(943), 328.
|
|