|
Dauphin, G., Zientara, S., Zeller, H., & Murgue, B. (2004). West Nile: worldwide current situation in animals and humans. Comp Immunol Microbiol Infect Dis, 27(5), 343–355.
Abstract: West Nile (WN) virus is a mosquito-borne flavivirus that is native to Africa, Europe, and Western Asia. It mainly circulates among birds, but can infect many species of mammals, as well as amphibians and reptiles. Epidemics can occur in rural as well as urban areas. Transmission of WN virus, sometimes involving significant mortality in humans and horses, has been documented at erratic intervals in many countries, but never in the New World until it appeared in New York City in 1999. During the next four summers it spread with incredible speed to large portions of 46 US states, and to Canada, Mexico, Central America and the Caribbean. In many respects, WN virus is an outstanding example of a zoonotic pathogen that has leaped geographical barriers and can cause severe disease in human and equine. In Europe, in the past two decades there have been a number of significant outbreaks in several countries. However, very little is known of the ecology and natural history of WN virus transmission in Europe and most WN outbreaks in humans and animals remain unpredictable and difficult to control.
|
|
|
Venter, G. J., Koekemoer, J. J. O., & Paweska, J. T. (2006). Investigations on outbreaks of African horse sickness in the surveillance zone in South Africa. Rev Sci Tech, 25(3), 1097–1109.
Abstract: Confirmed outbreaks of African horse sickness (AHS) occurred in the surveillance zone of the Western Cape in 1999 and 2004, both of which led to a two-year suspension on the export of horses. Light trap surveys in the outbreak areas showed that known vector competent Culicoides species, notably C. imicola, were abundant and present in numbers equal to those in the traditional AHS endemic areas. Isolations of AHS virus serotypes 1 and 7, equine encephalosis virus, and bluetongue virus from field-collected C. imicola in the surveillance zone demonstrated that this species was highly competent and could transmit viruses belonging to different serogroups of the Orbivirus genus. Molecular identification of recovered virus isolates indicated that at least two incursions of AHS into the surveillance zone had taken place in 2004. The designation of an AHS-free zone in the Western Cape remains controversial since it can be easily compromised, as evidenced by the two recent outbreaks. In light of the results reported in the present study, the policy of maintaining a large population of unvaccinated horses in the surveillance zone should be reconsidered, as it leaves them vulnerable to infection with AHS virus, which is the most pathogenic of all equine viruses.
|
|