|
Giangaspero, A., Traversa, D., & Otranto, D. (2004). [Ecology of Thelazia spp. in cattle and their vectors in Italy]. Parassitologia, 46(1-2), 257–259.
Abstract: The genus Thelazia (Spirurida, Thelaziidae) includes a cosmopolitan group of eyeworm spirurids responsible for ocular infections in domestic and wild animals and transmitted by different species of muscids. Bovine thelaziosis is caused by Thelazia rhodesi Desmarest 1828, Thelazia gulosa Railliet & Henry 1910, and Thelazia skrjabini Erschow 1928, which occur in many countries; T. gulosa and T. skrjabini have been reported mainly in the New World, while T. rhodesi is particularly common in the Old World. In Italy, T. rhodesi was reported in southern regions a long time ago and, recently, T. gulosa and T. skrjabini have been identified in autochthonous cattle first in Apulia and then in Sardinia. Thirteen species of Musca are listed as intermediate hosts of eyeworms, but only Musca autumnalis and Musca larvipara have been demonstrated to act as vectors of Thelazia in the ex-URSS, North America, ex-Czechoslovakia and more recently in Sweden. In Italy, after the reports of T. gulosa and T. skrjabini in southern regions, the intermediate hosts of bovine eyeworms were initially only suspected as the predominant secretophagous Muscidae collected from the periocular region of cattle with thelaziosis were the face flies, M. autumnalis and M. larvipara, followed by Musca osiris, Musca tempestiva and Musca domestica. The well-known constraints in the identification of immature eyeworms to species by fly dissection and also the time-consuming techniques used constitute important obstacles to epidemiological field studies (i.e. vector identification and/or role, prevalence and pattern of infection in flies, etc.). Molecular studies have recently permitted to further investigations into this area. A PCR-RFLP analysis of the ribosomal ITS-1 sequence was developed to differentiate the 3 species of Thelazia (i.e. T. gulosa, T. rhodesi and T. skrjabini) found in Italy, then a molecular epidemiological survey has recently been carried out in field conditions throughout five seasons of fly activity and has identified the role of M. autumnalis, M. larvipara, M. osiris and M. domestica as vectors of T. gulosa and of M. autumnalis and M. larvipara of T. rhodesi. Moreover, M. osiris was described, for the first time, to act as a vector of T. gulosa and M. larvipara of T. gulosa and T. rhodesi. The mean prevalence in the fly population examined was found to be 2.86%. The molecular techniques have opened new perspectives for further research on the ecology and epidemiology not only of Thelazia in cattle but also of other autochthonous species of Thelazia which have been also recorded in Italy, such as Thelazia callipaeda, which is responsible for human and canid ocular infection and Thelazia lacrymalis, the horse eyeworm whose epidemiological molecular studies are in progress.
|
|
|
Lemasson, J. J., Fontenille, D., Lochouarn, L., Dia, I., Simard, F., Ba, K., et al. (1997). Comparison of behavior and vector efficiency of Anopheles gambiae and An. arabiensis (Diptera:Culicidae) in Barkedji, a Sahelian area of Senegal. J Med Entomol, 34(4), 396–403.
Abstract: The ecology, population dynamics, and malaria vector efficiency of Anopheles gambiae and An. arabiensis were studied for 2 yr in a Sahelian village of Senegal. Anophelines were captured at human bait and resting indoors by pyrethrum spray. Mosquitoes belonging to the An. gambiae complex were identified by polymerase chain reaction. Of 26,973 females, An. arabiensis represented 79% of the mosquitoes captured and remained in the study area longer than An. gambiae after the rains terminated. There were no differences in nocturnal biting cycles or endophagous rates between An. gambiae and An. arabiensis. Based on an enzyme-linked immunosorbent assay test of bloodmeals, the anthropophilic rate of these 2 vectors were both approximately 60%, when comparisons were made during the same period. Overall, 18% of the resting females had patent mixed bloodmeals, mainly human-bovine. The parity rates of An. gambiae and An. arabiensis varied temporally. Despite similar behavior, the Plasmodium falciparum circumsporozoite protein (CSP) rates were different between An. gambiae (4.1%) and An. arabiensis (1.3%). P. malariae and P. ovale only represented 4% of the total Plasmodium identified in mosquitoes. Transmission was seasonal, occurring mainly during 4 mo. The CSP entomological inoculation rates were 128 bites per human per year for the 1st yr and 100 for the 2nd yr. Because of the combination of a high human biting rate and a low CSP rate, An. arabiensis accounted for 63% of transmission. Possible origin of differences in CSP rate between An. gambiae and An. arabiensis is discussed in relation to the parity rate, blood feeding frequency, and the hypothesis of genetic factors.
|
|
|
Traversa, D., Otranto, D., Iorio, R., & Giangaspero, A. (2005). Molecular characterization of Thelazia lacrymalis (Nematoda, Spirurida) affecting equids: a tool for vector identification. Mol Cell Probes, 19(4), 245–249.
Abstract: Equine thelaziosis caused by the eyeworm Thelazia lacrymalis is a parasitic disease transmitted by muscid flies. Although equine thelaziosis is known to have worldwide distribution, information on the epidemiology and presence of the intermediate hosts of T. lacrymalis is lacking. In the present work, a PCR-RFLP based assay on the first and/or second internal transcribed spacer (ITS1 and ITS2) of ribosomal DNA was developed for the detection of T. lacrymalis DNA in its putative vector(s). The sensitivity of the technique was also assessed. The restriction patterns obtained readily differentiated T. lacrymalis from four species of Musca (Diptera, Muscidae) (i.e. Musca autumnalis, Musca domestica, Musca larvipara and Musca osiris), which are potential vectors of equine eyeworms. The molecular assay presented herein is a useful tool to identify the intermediate host(s) of T. lacrymalis in natural conditions and to study its/their ecology and epidemiology.
|
|