|
Bering, J. M. (2004). A critical review of the “enculturation hypothesis”: the effects of human rearing on great ape social cognition. Anim. Cogn., 7(4), 201–212.
Abstract: Numerous investigators have argued that early ontogenetic immersion in sociocultural environments facilitates cognitive developmental change in human-reared great apes more characteristic of Homo sapiens than of their own species. Such revamping of core, species-typical psychological systems might be manifest, according to this argument, in the emergence of mental representational competencies, a set of social cognitive skills theoretically consigned to humans alone. Human-reared great apes' capacity to engage in “true imitation,” in which both the means and ends of demonstrated actions are reproduced with fairly high rates of fidelity, and laboratory great apes' failure to do so, has frequently been interpreted as reflecting an emergent understanding of intentionality in the former. Although this epigenetic model of the effects of enculturation on social cognitive systems may be well-founded and theoretically justified in the biological literature, alternative models stressing behavioral as opposed to representational change have been largely overlooked. Here I review some of the controversy surrounding enculturation in great apes, and present an alternative nonmentalistic version of the enculturation hypothesis that can also account for enhanced imitative performance on object-oriented problem-solving tasks in human-reared animals.
|
|
|
Fragaszy, D., & Visalberghi, E. (2004). Socially biased learning in monkeys. Learn Behav, 32(1), 24–35.
Abstract: We review socially biased learning about food and problem solving in monkeys, relying especially on studies with tufted capuchin monkeys (Cebus apella) and callitrichid monkeys. Capuchin monkeys most effectively learn to solve a new problem when they can act jointly with an experienced partner in a socially tolerant setting and when the problem can be solved by direct action on an object or substrate, but they do not learn by imitation. Capuchin monkeys are motivated to eat foods, whether familiar or novel, when they are with others that are eating, regardless of what the others are eating. Thus, social bias in learning about foods is indirect and mediated by facilitation of feeding. In most respects, social biases in learning are similar in capuchins and callitrichids, except that callitrichids provide more specific behavioral cues to others about the availability and palatability of foods. Callitrichids generally are more tolerant toward group members and coordinate their activity in space and time more closely than capuchins do. These characteristics support stronger social biases in learning in callitrichids than in capuchins in some situations. On the other hand, callitrichids' more limited range of manipulative behaviors, greater neophobia, and greater sensitivity to the risk of predation restricts what these monkeys learn in comparison with capuchins. We suggest that socially biased learning is always the collective outcome of interacting physical, social, and individual factors, and that differences across populations and species in social bias in learning reflect variations in all these dimensions. Progress in understanding socially biased learning in nonhuman species will be aided by the development of appropriately detailed models of the richly interconnected processes affecting learning.
|
|
|
Nicol, C. J. (2004). Development, direction, and damage limitation: social learning in domestic fowl. Learn Behav, 32(1), 72–81.
Abstract: This review highlights two areas of particular interest in the study of social learning in fowl. First, the role of social learning in the development of feeding and foraging behavior in young chicks and older birds is described. The role of the hen as a demonstrator and possible teacher is considered, and the subsequent social influence of brood mates and other companions on food avoidance and food preference learning is discussed. Second, the way in which work on domestic fowl has contributed to an understanding of the importance of directed social learning is examined. The well-characterized hierarchical social organization of small chicken flocks has been used to design studies which demonstrate that the probability of social transmission is strongly influenced by social relationships between birds. The practical implications of understanding the role of social learning in the spread of injurious behaviors in this economically important species are briefly considered.
|
|
|
Regolin, L., Marconato, F., & Vallortigara, G. (2004). Hemispheric differences in the recognition of partly occluded objects by newly hatched domestic chicks (Gallus gallus). Anim. Cogn., 7(3), 162–170.
Abstract: Domestic chicks are capable of perceiving as a whole objects partly concealed by occluders (“amodal completion”). In previous studies chicks were imprinted on a certain configuration and at test they were required to choose between two alternative versions of it. Using the same paradigm we now investigated the presence of hemispheric differences in amodal completion by testing newborn chicks with one eye temporarily patched. Separate groups of newly hatched chicks were imprinted binocularly: (1) on a square partly occluded by a superimposed bar, (2) on a whole or (3) on an amputated version of the square. At test, in monocular conditions, each chick was presented with a free choice between a complete and an amputated square. In the crucial condition 1, chicks tested with only their left eye in use chose the complete square (like binocular chicks would do); right-eyed chicks, in contrast, tended to choose the amputated square. Similar results were obtained in another group of chicks imprinted binocularly onto a cross (either occluded or amputated in its central part) and required to choose between a complete or an amputated cross. Left-eyed and binocular chicks chose the complete cross, whereas right-eyed chicks did not choose the amputated cross significantly more often. These findings suggest that neural structures fed by the left eye (mainly located in the right hemisphere) are, in the chick, more inclined to a “global” analysis of visual scenes, whereas those fed by the right eye seem to be more inclined to a “featural” analysis of visual scenes.
|
|
|
Salzen, E. A., & Cornell, J. M. (1968). Self-perception and species recognition in birds. Behaviour, 30(1), 44–65.
|
|
|
Shettleworth, S. J. (1993). Varieties of learning and memory in animals. J Exp Psychol Anim Behav Process, 19(1), 5–14.
Abstract: It is often assumed that there is more than one kind of learning--or more than one memory system--each of which is specialized for a different function. Yet, the criteria by which the varieties of learning and memory should be distinguished are seldom clear. Learning and memory phenomena can differ from one another across species or situations (and thus be specialized) in a number of different ways. What is needed is a consistent theoretical approach to the whole range of learning phenomena, and one is explored here. Parallels and contrasts in the study of sensory systems illustrate one way to integrate the study of general mechanisms with an appreciation of species-specific adaptations.
|
|
|
Tomasello, M., & Call, J. (2004). The role of humans in the cognitive development of apes revisited. Anim. Cogn., 7(4), 213–215.
|
|
|
Whiten, A., Horner, V., Litchfield, C. A., & Marshall-Pescini, S. (2004). How do apes ape? Learn. Behav., 32(1), 36–52.
Abstract: In the wake of telling critiques of the foundations on which earlier conclusions were based, the last 15 years have witnessed a renaissance in the study of social learning in apes. As a result, we are able to review 31 experimental studies from this period in which social learning in chimpanzees, gorillas, and orangutans has been investigated. The principal question framed at the beginning of this era, Do apes ape? has been answered in the affirmative, at least in certain conditions. The more interesting question now is, thus, How do apes ape? Answering this question has engendered richer taxonomies of the range of social-learning processes at work and new methodologies to uncover them. Together, these studies suggest that apes ape by employing a portfolio of alternative social-learning processes in flexibly adaptive ways, in conjunction with nonsocial learning. We conclude by sketching the kind of decision tree that appears to underlie the deployment of these alternatives.
|
|
|
Williams, J. L., Friend, T. H., Collins, M. N., Toscano, M. J., Sisto-Burt, A., & Nevill, C. H. (2003). Effects of imprint training procedure at birth on the reactions of foals at age six months. Equine Vet J, 35(2), 127–132.
Abstract: REASONS FOR PERFORMING STUDY: While imprint training procedures have been promoted in popular magazines, they have received limited scientific investigation. OBJECTIVES: To determine the effects of a neonatal imprint training procedure on 6-month-old foals and to determine if any one session had a greater effect than others. METHODS: Foals (n = 131) were divided into the following treatments: no imprint training, imprint training at birth, 12, 24 and 48 h after birth or imprint training only at birth, 12, 24, 48, or 72 h after birth. Foals then received minimal human handling until they were tested at 6 months. RESULTS: During training, time to complete exposure to the stimulus was significant for only 2 of 6 stimuli. Percentage change in baseline heart rate was significant for only 2 of 10 stimuli. These 4 effects were randomly spread across treatments. CONCLUSIONS: Neither the number of imprint training sessions (0, 1, or 4) nor the timing of imprint training sessions (none, birth, 12, 24, 48, or 72 h after birth) influenced the foal's behaviour at 6 months of age. POTENTIAL CLINICAL RELEVANCE: In this study, imprint training did not result in better behaved, less reactive foals.
|
|
|
Zentall, T. R. (2004). Action imitation in birds. Learn Behav, 32(1), 15–23.
Abstract: Action imitation, once thought to be a behavior almost exclusively limited to humans and the great apes, surprisingly also has been found in a number of bird species. Because imitation has been viewed by some psychologists as a form of intelligent behavior, there has been interest in how it is distributed among animal species. Although the mechanisms responsible for action imitation are not clear, we are now at least beginning to understand the conditions under which it occurs. In this article, I try to identify and differentiate the various forms of socially influenced behavior (species-typical social reactions, social effects on motivation, social effects on perception, socially influenced learning, and action imitation) and explain why it is important to differentiate imitation from other forms of social influence. I also examine some of the variables that appear to be involved in the occurrence of imitation. Finally, I speculate about why a number of bird species, but few mammal species, appear to imitate.
|
|