|
Grubb, T. L., Foreman, J. H., Benson, G. J., Thurmon, J. C., Tranquilli, W. J., Constable, P. D., et al. (1996). Hemodynamic effects of calcium gluconate administered to conscious horses. J Vet Intern Med, 10(6), 401–404.
Abstract: Calcium gluconate was administered to conscious horses at 3 different rates (0.1, 0.2, and 0.4 mg/kg/min for 15 minutes each). Serum calcium concentrations and parameters of cardiovascular function were evaluated. All 3 calcium administration rates caused marked increases in both ionized and total calcium concentrations, cardiac index, stroke index, and cardiac contractility (dP/dtmax). Mean arterial pressure and right atrial pressure were unchanged; heart rate decreased markedly during calcium administration. Ionized calcium concentration remained between 54% and 57% of total calcium concentration throughout the study. We conclude that calcium gluconate can safely be administered to conscious horses at 0.1 to 0.4 mg/kg/min and that administration will result in improved cardiac function.
|
|
|
Houpt, K. A., Perry, P. J., Hintz, H. F., & Houpt, T. R. (1988). Effect of meal frequency on fluid balance and behavior of ponies. Physiol. Behav., 42(5), 401–407.
Abstract: Twelve ponies were fed their total daily ration either as one large meal or divided into six small meals. Pre- and post-feeding behavior was recorded six times a day. Blood samples were taken for 30 min before and two hr after the meal. Plasma protein increased from 7.0 to a peak of 7.3 g/dl with small meals and from 7.3 to 8.1 g/dl with large meals, and returned to pre-feeding levels by 90 min post-feeding. Hematocrit rose from 33.3 to 34.1% with small meals and from 33.0 to 36.0% with large meals. These rapid and short-lived increases indicate a decrease in plasma volume. Plasma osmolality rose with feeding from 283 to 285 mosmoles/kg with small meals and from 281 to 288 mosmoles/kg with large meals. Water availability had no significant effect on blood changes. Digestibility and rate of passage were measured with chromic oxide, but there were no differences. Vocalizing (neighing) and walking occurred more often before than after feeding, while eating bedding and engaging in other oral behaviors were more frequent after feeding.
|
|
|
Kinnunen, S., Laukkanen, R., Haldi, J., Hanninen, O., & Atalay, M. (2006). Heart rate variability in trotters during different training periods. Equine Vet J Suppl, (36), 214–217.
Abstract: REASONS FOR PERFORMING STUDY: Endurance training induces changes in autonomic nervous system functions. High intensity training includes the risk of overtraining, in man and horse. Heart rate variability (HRV) is a noninvasive measurement of the autonomic regulation of the heart rate, which is quick and easy to measure with modern telemetric technology. HYPOTHESIS: Since HRV is affected by changes in the autonomic nervous system, it might be an early stage indicator of poor recovery from a previous bout of exercise or overreaching or overtraining in horses in general. METHODS: The aim of the study was to monitor recovery and the possible overtraining status in horses by measuring HRV. The measurements reflected the responses of the previous day activities during different training periods including basic training, precompetition and competition during a one-year follow-up. RESULTS: HRV was at the highest during precompetition period (P<0.05) and it decreased significantly during competition period (P<0.05), indicating an increased stress load in the competition period. Walking increased HRV significantly compared to complete rest or jogging as previous day activities during basic training and precompetition periods (P<0.05). This finding suggests that horses are more relaxed during moderate exercise than standing still or anaerobic exercise. CONCLUSIONS: HRV can be used to monitor the cardiovascular responses to training in horses but confirmatory measures may also be required in addition to HRV to exclude other possible causes of underperformance.
|
|
|
Sloet van Oldruitenborgh-Oosterbaan, M. M., Blok, M. B., Begeman, L., Kamphuis, M. C. D., Lameris, M. C., Spierenburg, A. J., et al. (2006). Workload and stress in horses: comparison in horses ridden deep and round ('rollkur') with a draw rein and horses ridden in a natural frame with only light rein contact. Tijdschr Diergeneeskd, 131(5), 152–157.
Abstract: 'Rollkur' or 'overbending' is the low and deep riding of a dressage horse during training or warming up. Lately, this technique has been criticized, and not necessarily objectively, on welfare grounds. To be able to evaluate these criticisms, more needs to be known about the workload and stress of horses being ridden 'rollkur'. The aim of the present study was to compare the workload of eight riding-school horses when being ridden deep and round with a draw rein ('rollkur') and when being ridden in a natural frame with only light rein contact ('free'). Workload (as measured by heart rate and blood lactate concentration) was slightly higher when horses were ridden 'rollkur' than when they were ridden 'free'. There were no differences in packed cell volume, or glucose and cortisol concentrations. No signs of uneasiness or stress could be determined when the horses were ridden 'rollkur'. Subjectively, all horses improved their way of moving during 'rollkur' and were more responsive to their rider.
|
|
|
Sloet van Oldruitenborgh-Oosterbaan, M. M., Spierenburg, A. J., & van den Broek, E. T. W. (2006). The workload of riding-school horses during jumping.
Abstract: REASONS FOR PERFORMING THE STUDY: As there are no reports on the real workload of horses that jump fences, this study was undertaken in riding-school horses. OBJECTIVE: To compare the workload of horses jumping a course of fences with that of horses cantering over the same course at the same average speed without jumping fences. The workload variables included heart rate (HR), packed cell volume (PCV), acid-base balance (venous pH, pCO2, HCO3-) and blood lactate (LA), glucose, total protein and electrolyte concentrations. METHODS: Eight healthy riding-school horses performed test A (a course of approximately 700 m with 12 jumps from 0.8-1.0 m high at an average speed of approximately 350 m/min) and test B (same course at the same speed, but without the rails) in a crossover study with at least 4 h between the 2 tests. Before each test the horses were fitted with a heart rate meter (Polar Electro). Blood samples were taken from the jugular vein at rest prior to the test, after warm-up before starting the course, immediately after the course and after recovery. All samples were analysed immediately. RESULTS: The mean +/- s.d maximal HR (beats/min) during the course (184 +/- 17 and 156 +/- 21, respectively) and the mean HR after recovery (75 +/- 6 and 63 +/- 7, respectively) were significantly higher in test A compared to test B (P = 0.001 and P = 0.007 respectively). The mean LA concentrations after the course and after recovery (mmol/l) were significantly higher in test A (3.6 +/- 2.7 and 1.0 +/- 0.9, respectively) compared to test B (0.9 +/- 0.5 and 0.3 +/- 0.1, respectively), (P = 0.016 and P = 0.048 respectively). The mean PCV (I/l) after the course and after recovery was also significantly different between tests A (0.48 +/- 0.04 and 0.39 +/- 0.03, respectively) and B (0.42 +/- 0.04 and 0.36 +/- 0.03, respectively) (P<0.01). The mean pH and the mean HCO3- (mmol/l) after the course were significantly lower in test A (7.40 +/- 0.04 and 28.9 +/- 1.4, respectively) compared to test B (7.45 +/- 0.03 and 30.4 +/- 2.3, respectively) (P<0.05). CONCLUSIONS: This study indicates that in riding-school horses jumping fences, even at a low level competition, provokes a significant workload compared to cantering the same distance and speed without fences. POTENTIAL RELEVANCE: This study makes it clear that the extra workload of jumping fences should be taken into account in the training programmes of jumping horses. Further research with more experienced horses jumping higher fences will reveal the workload for top-level jumping horses.
|
|
|
Youket, R. J., Carnevale, J. M., Houpt, K. A., & Houpt, T. R. (1985). Humoral, hormonal and behavioral correlates of feeding in ponies: the effects of meal frequency. J. Anim Sci., 61(5), 1103–1110.
Abstract: The effect of meal frequency on body fluid, glucose, triiodothyronine (T3), heart rate and behavior was measured in 10 ponies. A simple reversal design was used in which each pony received one meal/day (1X) for 2 wk and six meals/day (6X) for 2 wk. The total intake/day was held constant. Feeding was followed by a rise in plasma levels of glucose, T3, protein and osmolality. One large meal was followed by significantly greater changes in all of the variables than was a meal one-sixth the size. Plasma T3 rose from 41 +/- 5 (SE) ng/liter before feeding to 43 +/- 5 ng/liter following a small meal, but rose significantly higher, from 39 +/- 4 to 60 +/- 10 ng/liter, following a large meal. Glucose rose from 84 +/- 3 to 109 +/- 7 mg/dl following a small meal and rose significantly higher, from 83 +/- 3 to 154 +/- 11 mg/dl, after a large meal. Plasma protein rose from 6.55 +/- .14 to 6.62 +/- .16 g/dl following a small meal and from 6.45 +/- .14 to 6.99 +/- .11 g/dl following a large meal. Osmolality rose from 227 +/- 1 mosmol/liter before to 279 +/- 1 mosmol/liter following a small meal and significantly higher from 278 +/- 2 to 285 +/- 1 mosnol/liter following a large meal. Heart rate rose from 42 beats/min in the absence of feed to 50 beats/min when food was visible to the ponies and did not rise higher when eating began. There were no significant differences in the cardiac response to one large meal and that to a small meal.(ABSTRACT TRUNCATED AT 250 WORDS)
|
|