|
Alexander, F. (1970). Multiple fistulation of the horse's large intestine. Br. Vet. J., 126(11), 604–606.
|
|
|
Altmann, H. J., Hertel, J., & Drepper, K. (1970). [Nutritional physiology of the horse. 3. Protein values in the gastrointestinal tract of slaughtered horses]. Z Tierphysiol Tierernahr Futtermittelkd, 26(5), 245–252.
|
|
|
Argue, C. K., & Clayton, H. M. (1993). A preliminary study of transitions between the walk and trot in dressage horses. Acta Anat (Basel), 146(2-3), 179–182.
Abstract: The object of this study was to determine the limb support sequence during the transitions from walk to trot and from trot to walk in dressage horses under saddle and to test the null hypothesis that the limb support sequence during the transitions is not related to the level of training. Sixteen dressage horses training at novice to FEI Grand Prix level were videotaped performing an average of 9 transitions each from walk to trot and from trot to walk. The 30-Hz videotapes were viewed in slow motion, and based on the limb support sequence the transitions were categorized into two types. In type 1 transitions there were no intermediate steps between the walk and trot sequences. Type 2 transitions were characterized by intermediate steps, including a single support phase. The Kendall rank-order correlation coefficient showed that a higher level of training was positively associated with an increased percentage of type 1 transitions for both walk-to-trot transitions (p < or = 0.05) and trot-to-walk transitions (p < or = 0.01). No significant preference for initiating or completing the trot on the left or right diagonal was found using the binomial test for individual horses and the Wilcoxon signed-ranks test for the group.
|
|
|
Arnold, W., Ruf, T., & Kuntz, R. (2006). Seasonal adjustment of energy budget in a large wild mammal, the Przewalski horse (Equus ferus przewalskii) II. Energy expenditure. J Exp Biol, 209(Pt 22), 4566–4573.
Abstract: Many large mammals show pronounced seasonal fluctuations of metabolic rate (MR). It has been argued, based on studies in ruminants, that this variation merely results from different levels of locomotor activity (LA), and heat increment of feeding (HI). However, a recent study in red deer (Cervus elaphus) identified a previously unknown mechanism in ungulates--nocturnal hypometabolism--that contributed significantly to reduced energy expenditure, mainly during late winter. The relative contribution of these different mechanisms to seasonal adjustments of MR is still unknown, however. Therefore, in the study presented here we quantified for the first time the independent contribution of thermoregulation, LA and HI to heart rate (f(H)) as a measure of MR in a free-roaming large ungulate, the Przewalski horse or Takhi (Equus ferus przewalskii Poljakow). f(H) varied periodically throughout the year with a twofold increase from a mean of 44 beats min(-1) during December and January to a spring peak of 89 beats min(-1) at the beginning of May. LA increased from 23% per day during December and January to a mean level of 53% per day during May, and declined again thereafter. Daily mean subcutaneous body temperature (T(s)) declined continuously during winter and reached a nadir at the beginning of April (annual range was 5.8 degrees C), well after the annual low of air temperature and LA. Lower T(s) during winter contributed considerably to the reduction in f(H). In addition to thermoregulation, f(H) was affected by reproduction, LA, HI and unexplained seasonal variation, presumably reflecting to some degree changes in organ mass. The observed phase relations of seasonal changes indicate that energy expenditure was not a consequence of energy uptake but is under endogenous control, preparing the organism well in advance of seasonal energetic demands.
|
|
|
Atock, M. A., & Williams, R. B. (1994). Welfare of competition horses. Rev Sci Tech, 13(1), 217–232.
Abstract: In the large majority of cases and circumstances, horses benefit from their association with man. However, abuse of horses can occur, due to neglect or through the pressures of competition. The welfare of all animals, including competition horses, has become increasingly topical over the past ten years. Equestrian sport is coming under closer public scrutiny due to reports of apparent abuse. The bodies responsible for regulating these sports strenuously endeavour to protect the welfare of horses which compete under their rules and regulations. The Federation Equestre Internationale (FEI: International Equestrian Federation) is the sole authority for all international events in dressage, show-jumping, three-day event, driving, endurance riding and vaulting. The FEI rules illustrate the ways in which the welfare of competing horses is safeguarded.
|
|
|
Barrey, E., & Galloux, P. (1997). Analysis of the equine jumping technique by accelerometry. Equine Vet J Suppl, (23), 45–49.
Abstract: The purpose of this study was to demonstrate the relationships between jumping technique and dorsoventral acceleration measured at the sternum. Eight saddle horses of various jumping abilities competed on a selective experimental show jumping course including 14 obstacles. An accelerometric belt fastened onto the thorax continuously measured the dorsoventral acceleration during the course. At each jump, 11 locomotor parameters (acceleration peaks, durations and stride frequency) were obtained from the dorsoventral acceleration-time curves. The type of obstacle significantly influenced the hindlimb acceleration peak at take-off and the landing acceleration peak (P<0.01). The poor jumpers exhibited a higher mean forelimb acceleration peak at take-off, a higher forelimb/hindlimb ratio between peaks of acceleration (F/H), and a lower approach stride frequency than good jumpers. Knocking over an obstacle was significantly associated with a low hindlimb acceleration peak at take-off and a high F/H ratio (P<0.01). In order to observe the continuous changes in the frequency domain of the dorsoventral acceleration during the approach and take-off phase, a Morlet's wavelet analysis was computed for each horse jumping over a series of 3 vertical obstacles. Different patterns of time-frequency images obtained by wavelet analysis were found when the horse either knocked over a vertical obstacle or cleared it. In the latter case, the image pattern showed an instantaneous increase in stride frequency at the end of the approach phase, and a marked energy content in the middle frequency range at take-off.
|
|
|
Bell, F. R. (1972). Sleep in the larger domesticated animals. Proc R Soc Med, 65(2), 176–177.
|
|
|
Belonje, P. C., & van Niekerk, C. H. (1975). A review of the influence of nutrition upon the oestrous cycle and early pregnancy in the mare. J Reprod Fertil Suppl, (23), 167–169.
Abstract: Attention is drawn to the beneficial effect of improved nutrition during winter and early spring on the ovarian activity of mares. Furthermore, the necessity of an adequate plane of nutrition during early pregnancy to prevent embryonic resorption is stressed.
|
|
|
Berger, J. (1983). Induced abortion and social factors in wild horses. Nature, 303(5912), 59–61.
Abstract: Much evidence now suggests that the postnatal killing of young in primates and carnivores, and induced abortions in some rodents, are evolved traits exerting strong selective pressures on adult male and female behaviour. Among ungulates it is perplexing that either no species have developed convergent tactics or that these behaviours are not reported, especially as ungulates have social systems similar to those of members of the above groups. Only in captive horses (Equus caballus) has infant killing been reported. It has been estimated that 40,000 wild horses live in remote areas of the Great Basin Desert of North America (US Department of Interior (Bureau of Land Management), unpublished report), where they occur in harems (females and young) defended by males. Here I present evidence that, rather than killing infants directly, invading males induce abortions in females unprotected by their resident stallions and these females are then inseminated by the new males.
|
|
|
Bobbert, M. F., & Santamaria, S. (2005). Contribution of the forelimbs and hindlimbs of the horse to mechanical energy changes in jumping. J Exp Biol, 208(2), 249–260.
Abstract: The purpose of the present study was to gain more insight into the contribution of the forelimbs and hindlimbs of the horse to energy changes during the push-off for a jump. For this purpose, we collected kinematic data at 240 Hz from 23 5-year-old Warmbloods (average mass: 595 kg) performing free jumps over a 1.15 m high fence. From these data, we calculated the changes in mechanical energy and the changes in limb length and joint angles. The force carried by the forelimbs and the amount of energy stored was estimated from the distance between elbow and hoof, assuming that this part of the leg behaved as a linear spring. During the forelimb push, the total energy first decreased by 3.2 J kg(-1) and then increased again by 4.2 J kg(-1) to the end of the forelimb push. At the end of the forelimb push, the kinetic energy due to horizontal velocity of the centre of mass was 1.6 J kg(-1) less than at the start, while the effective energy (energy contributing to jump height) was 2.3 J kg(-1) greater. It was investigated to what extent these changes could involve passive spring-like behaviour of the forelimbs. The amount of energy stored and re-utilized in the distal tendons during the forelimb push was estimated to be on average 0.4 J kg(-1) in the trailing forelimb and 0.23 J kg(-1) in the leading forelimb. This means that a considerable amount of energy was first dissipated and subsequently regenerated by muscles, with triceps brachii probably being the most important contributor. During the hindlimb push, the muscles of the leg were primarily producing energy. The total increase in energy was 2.5 J kg(-1) and the peak power output amounted to 71 W kg(-1).
|
|