|
Bachmann, I., Audige, L., & Stauffacher, M. (2003). Risk factors associated with behavioural disorders of crib-biting, weaving and box-walking in Swiss horses. Equine Vet J, 35(2), 158–163.
Abstract: REASONS FOR PERFORMING STUDY: Studies on the prevalence of behavioural disorders in horses and on associated risk factors have revealed inconsistent results. There are many studies on the neuropharmacological, surgical or mechanical therapy of stereotypies, but little is known about their causation. OBJECTIVES: To explore risk factors associated with the occurrence of behavioural disorders in horses. METHODS: A sample of horse owners, selected randomly and representative for Switzerland, was contacted in a postal survey. Answers were provided for 622 stables (response rate 35.2%). Individual data of 2,341 horses were examined with path analysis (multivariable linear and logistic regression), and adjustment made for possible confounding effects due to age and breed. RESULTS: Out of 60 possible risk factors, 11 were associated with the outcome at the univariable level (null-hypothesis path model) and 3 factors remained after the backward logistic regression procedure. Mature Warmbloods and Thoroughbreds, assessed by the owners to be reactive, fed 4 times a day and without daily pasture, had increased odds of displaying crib-biting, weaving and box-walking. Furthermore, indirect associations of 5 factors with the outcome were identified. CONCLUSIONS: The final logistic regression model of risk factors leads to the hypotheses that causal prevention of stereotypic behaviours should be based upon housing and management conditions which allow tactile contact with other horses (e.g. mutual grooming), daily free movement (paddock or pasture), as well as the provision of high amounts of roughage but of little or no concentrates. POTENTIAL CLINICAL RELEVANCE: It is one of the aims of population medicine to prevent the development of behavioural disorders. Further research is needed to test the concluding hypotheses in experimental studies or to verify them in the context of similar observational studies.
|
|
|
Barwick, R. S., Mohammed, H. O., McDonough, P. L., & White, M. E. (1998). Epidemiologic features of equine Leptospira interrogans of human significance. Prev Vet Med, 36(2), 153–165.
Abstract: Leptospirosis is a zoonotic bacterial disease caused by Leptospira interrogans. There is a serologic evidence that horses are exposed to L. interrogans and, as a shedder of these organisms, can be a threat to humans. We examined risk factors associated with the risk of testing seropositive to three L. interrogans serovars (L. icterohaemorrhagiae, L. grippotyphosa, and L. canicola) in the horses of New York State, in order to understand the epidemiology of the disease and suggest strategies to control and prevent equine leptospirosis. To carry out this study, blood samples were collected from a random sample of 2551 horses and tested for the presence of antibodies to the above serovars using the microscopic agglutination test. Samples with a titer $100 were considered positive. Clinical and demographic data were collected on each horse, the farms' management practices and ecology. Logistic regression analysis was used to develop a multivariate indexing system and to identify factors significantly associated with the risk of leptospirosis. Four indices were developed based on the possible sources of exposure: rodent exposure index; wildlife exposure index; soil and water index; and management index. The soil and water index was significantly associated with the risk of exposure to all three serovars. Management was positively associated with L. icterohaemorrhagiae and L. canicola. Density of horses turned out together was positively associated with the risk of exposure to L. grippotyphosa. We concluded that indirect exposure of horses to L. interrogans through contaminated soil and water appears to be significantly associated with the risk of exposure to all three serovars. Management appears to play an important role in the exposure to L. interrogans. Modification of management practices might reduce the horses' risk of exposure and hopefully minimize the human hazards.
|
|
|
Bast, T. F., Whitney, E., & Benach, J. L. (1973). Considerations on the ecology of several arboviruses in eastern Long Island. Am J Trop Med Hyg, 22(1), 109–115.
|
|
|
Beveridge, W. I. (1993). Unravelling the ecology of influenza A virus. Hist Philos Life Sci, 15(1), 23–32.
Abstract: For 20 years after the influenza A virus was discovered in the early 1930s, it was believed to be almost exclusively a human virus. But in the 1950s closely related viruses were discovered in diseases of horses, pigs and birds. Subsequently influenza A viruses were found to occur frequently in many species of birds, particularly ducks, usually without causing disease. Researchers showed that human and animal strains can hybridise thus producing new strains. Such hybrids may be the cause of pandemics in man. Most pandemics have started in China or eastern Russia where many people are in intimate association with animals. This situation provides a breeding ground for new strains of influenza A virus.
|
|
|
Crans, W. J., McNelly, J., Schulze, T. L., & Main, A. (1986). Isolation of eastern equine encephalitis virus from Aedes sollicitans during an epizootic in southern New Jersey. J Am Mosq Control Assoc, 2(1), 68–72.
Abstract: Eastern equine encephalitis virus (EEE) was isolated from the salt marsh mosquito, Aedes sollicitans, collected from coastal areas of New Jersey on 3 occasions during the late summer and fall of 1982. The isolations were made at a time when local Culiseta melanura were either undergoing a population increase or exhibiting high levels of EEE virus. Although no human cases were reported during the epizootic period, the data lend support to the hypothesis that Ae. sollicitans is capable of functioning as an epidemic vector in the coastal areas of New Jersey where human cases of EEE have been most common.
|
|
|
Fulhorst, C. F., Hardy, J. L., Eldridge, B. F., Chiles, R. E., & Reeves, W. C. (1996). Ecology of Jamestown Canyon virus (Bunyaviridae: California serogroup) in coastal California. Am J Trop Med Hyg, 55(2), 185–189.
Abstract: This paper reports the first isolation of Jamestown Canyon (JC) virus from coastal California and the results of tests for antibody to JC virus in mammals living in coastal California. The virus isolation was made from a pool of 50 Aedes dorsalis females collected as adults from Morro Bay, San Luis Obispo County, California. The virus isolate was identified by two-way plaque reduction-serum dilution neutralization tests done in Vero cell cultures. Sera from the mammals were tested for antibody to JC virus by a plaque-reduction serum dilution neutralization method. A high prevalence of JC virus-specific antibody was found in horses and cattle sampled from Morro Bay. This finding is additional evidence for the presence of a virus antigenically identical or closely related to JC virus in Morro Bay and indicates that the vectors of the virus in Morro Bay feed on large mammals. A high prevalence of virus-specific antibody was also found in horses sampled from Marin and San Diego counties. This finding suggests that viruses antigenically identical or closely related to JC virus are geographically widespread in coastal California.
|
|
|
Giangaspero, A., Traversa, D., & Otranto, D. (2004). [Ecology of Thelazia spp. in cattle and their vectors in Italy]. Parassitologia, 46(1-2), 257–259.
Abstract: The genus Thelazia (Spirurida, Thelaziidae) includes a cosmopolitan group of eyeworm spirurids responsible for ocular infections in domestic and wild animals and transmitted by different species of muscids. Bovine thelaziosis is caused by Thelazia rhodesi Desmarest 1828, Thelazia gulosa Railliet & Henry 1910, and Thelazia skrjabini Erschow 1928, which occur in many countries; T. gulosa and T. skrjabini have been reported mainly in the New World, while T. rhodesi is particularly common in the Old World. In Italy, T. rhodesi was reported in southern regions a long time ago and, recently, T. gulosa and T. skrjabini have been identified in autochthonous cattle first in Apulia and then in Sardinia. Thirteen species of Musca are listed as intermediate hosts of eyeworms, but only Musca autumnalis and Musca larvipara have been demonstrated to act as vectors of Thelazia in the ex-URSS, North America, ex-Czechoslovakia and more recently in Sweden. In Italy, after the reports of T. gulosa and T. skrjabini in southern regions, the intermediate hosts of bovine eyeworms were initially only suspected as the predominant secretophagous Muscidae collected from the periocular region of cattle with thelaziosis were the face flies, M. autumnalis and M. larvipara, followed by Musca osiris, Musca tempestiva and Musca domestica. The well-known constraints in the identification of immature eyeworms to species by fly dissection and also the time-consuming techniques used constitute important obstacles to epidemiological field studies (i.e. vector identification and/or role, prevalence and pattern of infection in flies, etc.). Molecular studies have recently permitted to further investigations into this area. A PCR-RFLP analysis of the ribosomal ITS-1 sequence was developed to differentiate the 3 species of Thelazia (i.e. T. gulosa, T. rhodesi and T. skrjabini) found in Italy, then a molecular epidemiological survey has recently been carried out in field conditions throughout five seasons of fly activity and has identified the role of M. autumnalis, M. larvipara, M. osiris and M. domestica as vectors of T. gulosa and of M. autumnalis and M. larvipara of T. rhodesi. Moreover, M. osiris was described, for the first time, to act as a vector of T. gulosa and M. larvipara of T. gulosa and T. rhodesi. The mean prevalence in the fly population examined was found to be 2.86%. The molecular techniques have opened new perspectives for further research on the ecology and epidemiology not only of Thelazia in cattle but also of other autochthonous species of Thelazia which have been also recorded in Italy, such as Thelazia callipaeda, which is responsible for human and canid ocular infection and Thelazia lacrymalis, the horse eyeworm whose epidemiological molecular studies are in progress.
|
|
|
Hazem, A. S. (1978). [Collective review: Salmonella paratyphi in animals and in the environment]. Dtsch Tierarztl Wochenschr, 85(7), 296–303.
|
|
|
Husted, L., Andersen, M. S., Borggaard, O. K., Houe, H., & Olsen, S. N. (2005). Risk factors for faecal sand excretion in Icelandic horses. Equine Vet J, 37(4), 351–355.
Abstract: REASONS FOR PERFORMING STUDY: Sandy soil is often mentioned as a risk factor in the development of sand-related gastrointestinal disease (SGID) in the horse. There are other variables, but few studies confirm any of these. OBJECTIVE: To investigate soil type, pasture quality, feeding practice in the paddock, age, sex and body condition score as risk factors for sand intake in the horse. METHODS: Faeces were collected from 211 Icelandic horses on 19 different studs in Denmark together with soil samples and other potential risk factors. Sand content in faeces determined by a sand sedimentation test was interpreted as evidence of sand intake. Soil types were identified by soil analysis and significance of the data was tested using logistic analysis. RESULTS: Of horses included in the study, 56.4% showed sand in the faeces and 5.7% had more than 5 mm sand as quantified by the rectal sleeve sedimentation test. Soil type had no significant effect when tested as main effect, but there was interaction between soil type and pasture quality. Significant interactions were also found between paddock feeding practice and pasture quality. CONCLUSION: To evaluate the risk of sand intake it is important to consider 3 variables: soil type, pasture quality and feeding practice. Pasture quality was identified as a risk factor of both short and long grass in combination with sandy soil, while clay soil had the lowest risk in these combinations. Feeding practice in the paddock revealed feeding directly on the ground to be a risk factor when there was short (1-5 cm) or no grass. Also, no feeding outdoors increased the risk on pastures with short grass, while this had no effect in paddocks with no grass. More than 50% of all horses investigated in this study had sand in the faeces. POTENTIAL RELEVANCE: The identification of risk factors is an important step towards prevention of SGID. Further research is necessary to determine why some horses exhibit more than 5 mm sand in the sedimentation test and whether this is correlated with geophagic behaviour.
|
|
|
Keiper, R., & Houpt, K. (1984). Reproduction in feral horses: an eight-year study. Am J Vet Res, 45(5), 991–995.
Abstract: The reproductive rate and foal survival of the free-ranging ponies on Assateague Island National Seashore were studied for 8 years, 1975 to 1982. Most (52%) of the 86 foals were born in May, 13% were born in April, 22.6% in June, 10.4% in July, and less than 1% in August and September. The mean foaling rate was 57.1 +/- 3.9% and the survival rate was 88.3 +/- 3.6%. Forty-eight colts and 55 fillies were born (sex ratio 53% female). Mares less than 3 years old did not foal and the foaling rate of 3-year-old mares was only 23%, that of 4-year-old mares was 46%, that of 5-year-old mares was 53%, and 6-year-old mares was 69%. The relatively poor reproduction rate was believed to be a consequence of the stress of lactating while carrying a foal when forage quality on the island was low. The hypothesis was supported by the higher reproductive rate (74.4 +/- 2.4%) of the ponies in the Chincoteague National Wildlife Refuge on the southern part of the island. Their foals are weaned and sold in July each year. Despite the low reproductive rate on Assateague Island National Seashore , the number of ponies increased from 43 to 80, a 90% increase in the 8-year period or greater than 10%/yr. There were 24 deaths and 8 dispersals from the study area.
|
|