|
Gothe, R. (1994). [Tapeworms, a problem in equine practice?]. Tierarztl Prax, 22(5), 466–470.
Abstract: This paper gives a survey on biology and ecology of equine tapeworms as well as on pathogenesis, clinics, diagnosis, therapy, and prophylaxis of tapeworm infections.
|
|
|
Hurn, S. D., & Turner, A. G. (2006). Ophthalmic examination findings of Thoroughbred racehorses in Australia. Vet Ophthalmol, 9(2), 95–100.
Abstract: OBJECTIVE: To record the prevalence and document the types of eye disease in population of Thoroughbred racehorses in Victoria, Australia. DESIGN: Prospective study. ANIMALS: Two hundred four Thoroughbred racehorses. PROCEDURE: All horses and both eyes were examined at four metropolitan and two country racing stable complexes. Ophthalmic exam was performed following dark adaptation with a transilluminator, biomicroscope, and direct ophthalmoscope. Intraocular pressures were measured when indicated. Both pupils were dilated with tropicamide when indicated. RESULTS: One hundred eighty-two (89.2%) flat-racing and 22 (10.8%) jump-racing (hurdle or steeple) horses were examined. Age range: 2-9 years (mean 3.7 years, median 3); 97 (47.5%) male-neuter, 74 (36. 3%) female, 33 (16.2%) male. Potential vision-threatening eye disease was present in 15 (7.4%) different horses: complete lenticular cataracts 3, posterior lens luxation and cataract 1, large peripapillary 'butterfly' inactive lesions 3, large peripapillary 'butterfly' active lesions 2, peripapillary focal inactive 'bullet hole' chorioretinal lesions (> 20) 5, optic nerve atrophy 1. Non-vision threatening eye disease was present in 117 (57.4%) different horses, involving one or more ocular structures: lower eyelid scars 3; periocular fibropapillomatous disease 1; third eyelid squamous cell carcinoma 1; corneal scars 6; corneal band opacity 2; anterior iris synechia 1; developmental cataracts 36 (17.2%); peripapillary focal inactive 'bullet hole' chorioretinal lesions (< 20) 103 (50.0%); linear peripapillary hyperpigmentation bands 16 (7.9%). Unusual variations of normal ocular anatomy and colobomata was recorded in 11 (5.4%) different horses: granular iridica hypoplasia 3, granular iridica hyperplasia 2, multilobular granular iridica cyst 1, microcornea 1, hyaloid remnant 1, rotated optic nerve head 1, coloboma of the lens 1, atypical coloboma of the retina 1. CONCLUSIONS: This survey demonstrates that the prevalence of vision-threatening eye disease in racing horses may be greater than previously perceived, and highlights the importance of ocular examination within any routine physical examination of horses.
|
|
|
Johnston, C., Holm, K. R., Erichsen, C., Eksell, P., & Drevemo, S. (2004). Kinematic evaluation of the back in fully functioning riding horses. Equine Vet J, 36(6), 495–498.
Abstract: REASONS FOR PERFORMING STUDY: Clinical history and examination are important features in diagnosis of equine back dysfunction. However, interpretation is subjective and therefore may vary substantially. OBJECTIVES: To establish a clinical tool to objectively evaluate the function of the equine back, in the form of a database on the kinematics of the back at the walk and trot in fully functioning riding horses. METHODS: Thirty-three fully functioning riding horses walked and trotted on a treadmill. Morphometrics and kinematics were tested for correlations to age, height, weight and stride length, and differences between gender (geldings and mares) and use (dressage and showjumping). RESULTS: A database for range of movement and symmetry of movement for extension and flexion, lateral bending, lateral excursion and axial rotation was presented. Symmetry values were very high for all variables. Significant differences were observed in use and gender. Age was negatively correlated to extension and flexion of the thoracolumbar junction. CONCLUSIONS: Interrelationships between use, gender and age to conformation and movement were established. POTENTIAL RELEVANCE: The database provides a basis for objective reference for diagnosis, therapy and rehabilitation of clinical cases of back dysfunction.
|
|
|
Licka, T., Kapaun, M., & Peham, C. (2004). Influence of rider on lameness in trotting horses. Equine Vet J, 36(8), 734–736.
Abstract: REASONS FOR PERFORMING STUDY: Equine lameness is commonly evaluated when the horse is being ridden, but the influence of the rider on the lameness has not been documented. OBJECTIVE: To document the effect of 2 riders of different training levels on the vertical movement of the head and croup. METHODS: Twenty mature horses were ridden at trot by an experienced dressage rider and a novice rider, as well as trotted in hand. Kinematic measurements of markers placed on the horse's head and sacral bone were carried out. The asymmetries of the vertical head and sacral bone motion were calculated as lameness parameters and compared with paired t tests. RESULTS: Trotting in hand, 17 horses showed forelimb lameness (1-4/10) and 13 hindlimb lameness (1-2/10). Intra-individually, 11 horses showed significant differences in forelimb lameness and 4 horses showed significant differences in hindlimb lameness when ridden. Over all horses, hindlimb lameness increased significantly under the dressage rider compared to unridden horses. CONCLUSIONS: The presence of a rider can alter the degree of lameness; however, its influence cannot be predicted for an individual horse. POTENTIAL RELEVANCE: In order to evaluate mild lameness, horses should be evaluated at trot both under saddle and in hand. If lameness is exacerbated, a second rider may be helpful; the level of training of the rider should be taken into consideration.
|
|
|
Madigan, J. E., & Bell, S. A. (2001). Owner survey of headshaking in horses. J Am Vet Med Assoc, 219(3), 334–337.
Abstract: OBJECTIVE: To determine signalment, history, clinical signs, duration, seasonality, and response to various treatments reported by owners for headshaking in horses. DESIGN: Owner survey. ANIMALS: 109 horses with headshaking. PROCEDURE: Owners of affected horses completed a survey questionnaire. RESULTS: 78 affected horses were geldings, 29 were mares, and 2 were stallions. Mean age of onset was 9 years. Headshaking in 64 horses had a seasonal component, and for most horses, headshaking began in spring and ceased in late summer or fall. The most common clinical signs were shaking the head in a vertical plane, acting like an insect was flying up the nostril, snorting excessively, rubbing the muzzle on objects, having an anxious expression while headshaking, worsening of clinical signs with exposure to sunlight, and improvement of clinical signs at night. Treatment with antihistamines, nonsteroidal anti-inflammatory drugs, corticosteroids, antimicrobials, fly control, chiropractic, and acupuncture had limited success. Sixty-one horses had been treated with cyproheptadine; 43 had moderate to substantial improvement. CONCLUSIONS AND CLINICAL RELEVANCE: Headshaking may have many causes. A large subset of horses have similar clinical signs including shaking the head in a vertical plane, acting as if an insect were flying up the nostrils, and rubbing the muzzle on objects. Seasonality and worsening of clinical signs with exposure to light are also common features of this syndrome. Geldings and Thoroughbreds appear to be overrepresented. Cyproheptadine treatment was beneficial in more than two thirds of treated horses.
|
|
|
Robert, C., Valette, J. P., & Denoix, J. M. (2006). Correlation between routine radiographic findings and early racing career in French trotters. Equine Vet J Suppl, (36), 473–478.
Abstract: REASONS FOR PERFORMING STUDY: The relationship between the presence of radiological abnormalities and subsequent racing performance is controversial. However, as training is expensive and time consuming, it would save time and money to identify subjects with osteo-articular lesions not compatible with a normal racing career on the basis of routine radiographic screenings at yearling age. OBJECTIVES: To evaluate the impact of osteo-articular lesions on racing ability in French Trotters and identify radiographic changes associated with failure in 'qualification', in order to provide objective criteria for selection of horses based on their osteo-articular status. HYPOTHESIS: The influence of radiographic findings (RF) on racing ability depends on their nature, location, clinical relevance and number. METHODS: The limbs of 202 French Trotters were radiographed just before they started training. All the RF were graded according to a standardised protocol depending on their severity. The success in 'qualification' (first race in career of French Trotters) was the criteria used to assess racing ability. Breeders and trainers were questioned about the causes for horses not racing. RESULTS: Overall 113 (55.9%) horses qualified. Osteoarticular lesions were directly responsible for nonqualification in 31% of the horses. Subjects with more than one abnormal RF, with abnormal RF on the fore-, hind-fetlock or proximal tarsus were less likely to qualify. Dorsal modelling in the front fetlock and osteochondrosis of the lateral trochlear ridge of the femur also significantly reduced the qualification rate. CONCLUSIONS: Most RF are compatible with beginning a racing career, but severe RF or multiple abnormal RF significantly compromise future racing career. POTENTIAL RELEVANCE: This study supports the use of routine radiographic programmes for detection of osteoarticular lesions in yearlings. A synthetic radiographic score, based on both the severity and the number of lesions, could be useful for breeders and trainers as complementary information to select their horses.
|
|
|
Wennerstrand, J., Johnston, C., Roethlisberger-Holm, K., Erichsen, C., Eksell, P., & Drevemo, S. (2004). Kinematic evaluation of the back in the sport horse with back pain. Equine Vet J, 36(8), 707–711.
Abstract: REASONS FOR PERFORMING STUDY: Earlier studies have developed a clinical tool to evaluate objectively the function of the equine back. The ability to differentiate horses with back pain from asymptomatic, fully functioning horses using kinematic measures from this tool has not been evaluated. OBJECTIVES: To compare the kinematics of the back at walk and trot in riding horses with back dysfunction to the same parameters in asymptomatic sport horses. METHODS: The kinematics of the back in 12 horses with impaired performance and back pain were studied at walk and trot on a treadmill. Data were captured for 10 sees at 240 Hz. Range of movement (ROM) and intravertebral pattern symmetry of movement for flexion and extension (FE), lateral bending (LB) and axial rotation (AR) were derived from angular motion pattern data and the results compared to an earlier established database on asymptomatic riding horses. RESULTS: At walk, horses with back dysfunction had a ROM smaller for dorsoventral FE in the caudal thoracic region (T13 = 7.50 degrees, T17 = 7.71 degrees; P<0.05), greater for LB at T13 (8.13 degrees; P<0.001) and smaller for AR of the pelvis (10.97 degrees; P<0.05) compared to asymptomatic horses (FE-T13 = 8.28 degrees, FE-T17 = 8.49 degrees, LB-T13 = 6.34 degrees, AR-pelvis = 12.77 degrees). At trot, dysfunctional horses had a smaller (P<0.05) ROM for FE at the thoracic lumbar junction (T17 = 2.46 degrees, L1 = 2.60 degrees) compared to asymptomatic horses (FE-T17 = 3.07 degrees, FE-L1 = 3.12 degrees). CONCLUSIONS: The objective measurement technique can detect differences between back kinematics in riding horses with signs of back dysfunction and asymptomatic horses. The clinical manifestation of back pain results in diminished flexion/extension movement at or near the thoracic lumbar junction. However, before applying the method more extensively in practice it is necessary to evaluate it further, including measurements of patients whose diagnoses can be confirmed and long-term follow-ups of back patients after treatment. POTENTIAL RELEVANCE: Since the objective measurement technique can detect small movement differences in back kinematics, it should help to clinically describe and, importantly, objectively detect horses with back pain and dysfunction.
|
|