|
Biro, D., Sumpter, D. J. T., Meade, J., & Guilford, T. (2006). From Compromise to Leadership in Pigeon Homing. Curr Biol, 16(21), 2123–2128.
Abstract: Summary A central problem faced by animals traveling in groups is how navigational decisions by group members are integrated, especially when members cannot assess which individuals are best informed or have conflicting information or interests , , , and . Pigeons are now known to recapitulate faithfully their individually distinct habitual routes home , and , and this provides a novel paradigm for investigating collective decisions during flight under varying levels of interindividual conflict. Using high-precision GPS tracking of pairs of pigeons, we found that if conflict between two birds' directional preferences was small, individuals averaged their routes, whereas if conflict rose over a critical threshold, either the pair split or one of the birds became the leader. Modeling such paired decision-making showed that both outcomes--compromise and leadership--could emerge from the same set of simple behavioral rules. Pairs also navigated more efficiently than did the individuals of which they were composed, even though leadership was not necessarily assumed by the more efficient bird. In the context of mass migration of birds and other animals, our results imply that simple self-organizing rules can produce behaviors that improve accuracy in decision-making and thus benefit individuals traveling in groups , and .
|
|
|
Hrdy, S. B. (1974). Male-male competition and infanticide among the langurs (Presbytis entellus) of Abu, Rajasthan. Folia Primatol (Basel), 22(1), 19–58.
|
|
|
Keiper, R. R. (1986). Social structure. Vet Clin North Am Equine Pract, 2(3), 465–484.
Abstract: Socially feral horses live in stable social groups characterized by one adult male, a number of adult females, and their offspring up to 2 years of age. Extra males either live by themselves or with other males in bachelor groups. The bands occupy nondefended home ranges that often overlap. Many abnormal behaviors seen in domestic horses occur because some aspect of their normal social behavior cannot be carried out in captivity.
|
|
|
Petruso, E. J., Fuchs, T., & Bingman, V. P. (2007). Time-space learning in homing pigeons (Columba livia): orientation to an artificial light source. Anim. Cogn., 10(2), 181–188.
Abstract: Time-space learning reflects an ability to represent in memory event-stimulus properties together with the place and time of the event; a capacity well developed in birds. Homing pigeons were trained in an indoor octagonal arena to locate one food goal in the morning and a different food goal in the late afternoon. The goals differed with respect to their angular/directional relationship to an artificial light source located outside the arena. Further, the angular difference in reward position approximated the displacement of the sun's azimuth that would occur during the same time period. The experimental birds quickly learned the task, demonstrating the apparent ease with which birds can adopt an artificial light source to discriminate among alternative spatial responses at different times of the day. However, a novel midday probe session following successful learning revealed that the light source was interpreted as a stable landmark and not as a surrogate sun that would support compass orientation. Probe sessions following a phase shift of the light-dark cycle revealed that the mechanism employed to make the temporal discrimination was prevailingly based on an endogenous circadian rhythm and not an interval timing mechanism.
|
|
|
Saayman, G. S. (1971). Behaviour of the adult males in a troop of free-ranging Chacma baboons (Papio ursinus). Folia Primatol (Basel), 15(1), 36–57.
|
|
|
Shettleworth, S. J., & Sutton, J. E. (2005). Multiple systems for spatial learning: dead reckoning and beacon homing in rats. J Exp Psychol Anim Behav Process, 31(2), 125–141.
Abstract: Rats homed with food in a large lighted arena. Without visual cues, they used dead reckoning. When a beacon indicated the home, rats could also use the beacon. Homing did not differ in 2 groups of rats, 1 provided with the beacon and 1 without it; tests without the beacon gave no evidence that beacon learning overshadowed dead reckoning (Experiment 1). When the beacon was at the home for 1 group and in random locations for another, there was again no evidence of cue competition (Experiment 2). Dead reckoning experience did not block acquisition of beacon homing (Experiment 3). Beacon learning and dead reckoning do not compete for predictive value but acquire information in parallel and are used hierarchically.
|
|
|
Sutton, J. E., & Shettleworth, S. J. (2005). Internal sense of direction and landmark use in pigeons (Columba livia). J Comp Psychol, 119(3), 273–284.
Abstract: The relative importance of an internal sense of direction based on inertial cues and landmark piloting for small-scale navigation by White King pigeons (Columba livia) was investigated in an arena search task. Two groups of pigeons differed in whether they had access to visual cues outside the arena. In Experiment 1, pigeons were given experience with 2 different entrances and all pigeons transferred accurate searching to novel entrances. Explicit disorientation before entering did not affect accuracy. In Experiments 2-4, landmarks and inertial cues were put in conflict or tested 1 at a time. Pigeons tended to follow the landmarks in a conflict situation but could use an internal sense of direction to search when landmarks were unavailable.
|
|