|
Carroll, G. L., Matthews, N. S., Hartsfield, S. M., Slater, M. R., Champney, T. H., & Erickson, S. W. (1997). The effect of detomidine and its antagonism with tolazoline on stress-related hormones, metabolites, physiologic responses, and behavior in awake ponies. Vet Surg, 26(1), 69–77.
Abstract: Six ponies were used to investigate the effect of tolazoline antagonism of detomidine on physiological responses, behavior, epinephrine, norepinephrine, cortisol, glucose, and free fatty acids in awake ponies. Each pony had a catheter inserted into a jugular vein 1 hour before beginning the study. Awake ponies were administered detomidine (0.04 mg/kg intravenously [i.v.]) followed 20 minutes later by either tolazoline (4.0 mg/kg i.v.) or saline. Blood samples were drawn from the catheter 5 minutes before detomidine administration (baseline), 5 minutes after detomidine administration, 20 minutes before detomidine administration which was immediately before the administration of tolazoline or saline (time [T] = 0), and at 5, 30, and 60 minutes after injections of tolazoline or saline (T = 5, 30, and 60 minutes, respectively). Compared with heart rate at T = 0, tolazoline antagonism increased heart rate 45% at 5 minutes. There was no difference in heart rate between treatments at 30 minutes. Blood pressure remained stable after tolazoline, while it decreased over time after saline. Compared with concentrations at T = 0, tolazoline antagonism of detomidine in awake ponies resulted in a 55% increase in cortisol at 30 minutes and a 52% increase in glucose at 5 minutes. The change in free fatty acids was different for tolazoline and saline over time. Free fatty acids decreased after detomidine administration. Free fatty acids did not change after saline administration. After tolazoline administration, free fatty acids increased transiently. Tolazoline tended to decrease sedation and analgesia at 15 and 60 minutes postantagonism. Antagonism of detomidine-induced physiological and behavioral effects with tolazoline in awake ponies that were not experiencing pain appears to precipitate a stress response as measured by cortisol, glucose, and free fatty acids. If antagonism of an alpha-agonist is contemplated, the potential effect on hormones and metabolites should be considered.
|
|
|
Grubb, T. L., Foreman, J. H., Benson, G. J., Thurmon, J. C., Tranquilli, W. J., Constable, P. D., et al. (1996). Hemodynamic effects of calcium gluconate administered to conscious horses. J Vet Intern Med, 10(6), 401–404.
Abstract: Calcium gluconate was administered to conscious horses at 3 different rates (0.1, 0.2, and 0.4 mg/kg/min for 15 minutes each). Serum calcium concentrations and parameters of cardiovascular function were evaluated. All 3 calcium administration rates caused marked increases in both ionized and total calcium concentrations, cardiac index, stroke index, and cardiac contractility (dP/dtmax). Mean arterial pressure and right atrial pressure were unchanged; heart rate decreased markedly during calcium administration. Ionized calcium concentration remained between 54% and 57% of total calcium concentration throughout the study. We conclude that calcium gluconate can safely be administered to conscious horses at 0.1 to 0.4 mg/kg/min and that administration will result in improved cardiac function.
|
|
|
Trim, C. M., Moore, J. N., & Clark, E. S. (1989). Renal effects of dopamine infusion in conscious horses. Equine Vet J Suppl, (7), 124–128.
Abstract: An ultrasonic flow probe was implanted around a branch of the left renal artery in five horses. The effects of dopamine were studied in the unsedated horses 10 days after surgery. Three experiments, separated by at least two days, were performed in random order on each horse. In two experiments, dopamine was infused intravenously for 60 mins at either 2.5 and 5.0 micrograms/kg bodyweight (bwt)/min. Saline was infused for 60 mins before and after each infusion, and for 180 mins in the third experiment as a control. Renal blood flow increased during administration of dopamine at both dose rates (P = 0.0001). Urine volume increased (P = 0.055), and osmolality decreased (P < 0.05), with infusion of dopamine at 5.0 micrograms/kg bwt/min. Arterial blood pressure and heart rate were not significantly affected. Fractional excretions of sodium and potassium were not significantly changed with dopamine infusion. The higher dopamine dose rate was accompanied by dysrhythmias in some horses.
|
|
|
Turner, K. K., Nielsen, B. D., O'Connor, C. I., & Burton, J. L. (2006). Bee pollen product supplementation to horses in training seems to improve feed intake: A pilot study. J Anim Physiol Anim Nutr (Berl), 90(9-10), 414–420.
Abstract: The objective of this study was to determine the efficacy of supplementation of Dynamic Trio 50/50, a bee pollen-based product, to improve physical fitness, blood leukocyte profiles, and nutritional variables in exercised horses. Ten Arabian horses underwent a standardised exercise test (SET), then were pair-matched by sex and fitness and randomly assigned to BP (receiving 118 g of Dynamic Trio 50/50 daily) or CO (receiving 73 g of a placebo) for a period of 42 days. A total collection was conducted from days 18 to 21 on six geldings to determine nutrient retention and neutral detergent fibre (NDF) and acid detergent fibre (ADF) digestibility. Horses were exercise conditioned and completed another SET on day 42. V160 and V200 were calculated from SET heart rates (HR). Lactate, glucose, haematocrit (HT) and haemoglobin (HB) concentrations were determined from SET blood samples. Total leukocyte count, and circulating numbers of various leukocytes and IgG, IgM and IgA concentrations were determined in rest and recovery blood samples from both SETs. Geldings on BP (n = 3) ate more feed than CO. BP had less phosphorus excretion, and tended to retain more nitrogen. BP tended to digest more NDF and ADF while having lower NDF digestibility and tending to have lower ADF digestibility. No treatment differences existed for V160 and V200, HR, lactate, HT and HB. There was a trend for lymphocyte counts to be lower in BP than CO on day 42. Dynamic Trio 50/50 supplementation may have a positive effect on performance by helping horses in training meet their potentially increased nutrient demands by increasing feed intake and thus nutrient retention.
|
|