|
Alexander, B. K., & Bowers, J. M. (1969). Social organization of a troop of Japanese monkeys in a two-acre enclosure. Folia Primatol (Basel), 10(3), 230–242.
|
|
|
Arnold, K., & Zuberbuhler, K. (2006). Language evolution: semantic combinations in primate calls. Nature, 441(7091), 303.
Abstract: Syntax sets human language apart from other natural communication systems, although its evolutionary origins are obscure. Here we show that free-ranging putty-nosed monkeys combine two vocalizations into different call sequences that are linked to specific external events, such as the presence of a predator and the imminent movement of the group. Our findings indicate that non-human primates can combine calls into higher-order sequences that have a particular meaning.
|
|
|
de Waal, F. B. (1977). The organization of agonistic relations within two captive groups of Java-monkeys (Macaca fascicularis). Z. Tierpsychol., 44(3), 225–282.
Abstract: The paper offers a detailed quantitative descripition of the distribution of agonistic activities over the members of two groups of Java-monkeys (Macaca fascicularis). These groups lived in captivity and were well-established: i.e. they had an extensive network of genealogical relationships. The study pays special attention to agonistic interactions with three or more participants. Its main purpose is an analysis of the way dyadic agonistic relations (e.g. dominance relations) are affected by third group members and the relations among these. The paper presents data on the ontogeny of 'dependent dominance', the 'control role' of the alpha-male, and the functions of different types of alliances.
|
|
|
de Wall, F. B., & Aureli, F. (1997). Conflict resolution and distress alleviation in monkeys and apes. Ann N Y Acad Sci, 807, 317–328.
Abstract: Research on nonhuman primates has produced compelling evidence for reconciliation and consolation, that is, postconflict contacts that serve to respectively repair social relationships and reassure distressed individuals, such as victims of attack. This has led to a view of conflict and conflict resolution as an integrated part of social relationships, hence determined by social factors and modifiable by the social environment. Implications of this new model of social conflict are discussed along with evidence for behavioral flexibility, the value of cooperation, and the possibility that distress alleviation rests on empathy, a capacity that may be present in chimpanzees and humans but not in most other animals.
|
|
|
Dunbar, R. I., & Dunbar, E. P. (1976). Contrasts in social structure among black-and-white colobus monkey groups. Anim. Behav., 24(1), 84–92.
Abstract: Three types of Colobus guereza groups may be distinguished on the bases of size and composition, namely small one-male groups, large, one-male groups and multi-male groups. The social structure of each type of group is described in terms of the distribution of non-agonistic interactions, the frequency and distribution of agonistic behaviour and the organization of the roles of vigilance, territorial defence and leadership. A number of differences are found between the group types which appear to be related to the differences in group size and composition. It is suggested that these group types represent stages in the life-cycle of colobus groups, and that such an interpretation may help to resolve some of the conflicting reports in the literature.
|
|
|
Fragaszy, D., & Visalberghi, E. (2004). Socially biased learning in monkeys. Learn Behav, 32(1), 24–35.
Abstract: We review socially biased learning about food and problem solving in monkeys, relying especially on studies with tufted capuchin monkeys (Cebus apella) and callitrichid monkeys. Capuchin monkeys most effectively learn to solve a new problem when they can act jointly with an experienced partner in a socially tolerant setting and when the problem can be solved by direct action on an object or substrate, but they do not learn by imitation. Capuchin monkeys are motivated to eat foods, whether familiar or novel, when they are with others that are eating, regardless of what the others are eating. Thus, social bias in learning about foods is indirect and mediated by facilitation of feeding. In most respects, social biases in learning are similar in capuchins and callitrichids, except that callitrichids provide more specific behavioral cues to others about the availability and palatability of foods. Callitrichids generally are more tolerant toward group members and coordinate their activity in space and time more closely than capuchins do. These characteristics support stronger social biases in learning in callitrichids than in capuchins in some situations. On the other hand, callitrichids' more limited range of manipulative behaviors, greater neophobia, and greater sensitivity to the risk of predation restricts what these monkeys learn in comparison with capuchins. We suggest that socially biased learning is always the collective outcome of interacting physical, social, and individual factors, and that differences across populations and species in social bias in learning reflect variations in all these dimensions. Progress in understanding socially biased learning in nonhuman species will be aided by the development of appropriately detailed models of the richly interconnected processes affecting learning.
|
|
|
Harlow, H. F. (1950). Learning and satiation of response in intrinsically motivated complex puzzle performance by monkeys. J Comp Physiol Psychol, 43(4), 289–294.
Abstract: Two rhesus monkeys, given 60 two-hour sessions with a six-device mechanical puzzle showed clear evidence of learning, the curve showing ratio of incorrect to correct responses appearing quite comparable to similar curves obtained during externally rewarded situations. When, on the thirteenth day of tests, the subjects were presented with the puzzle 100 times at 6-minute intervals, the number of devices manipulated decreased regularly throughout the day, although there was no significant change in the number of times the problem assembly was attacked.
|
|
|
Heistermann, M., Palme, R., & Ganswindt, A. (2006). Comparison of different enzyme-immunoassays for assessment of adrenocortical activity in primates based on fecal analysis. Am. J. Primatol., 68(3), 257–273.
Abstract: Most studies published to date that used fecal glucocorticoid measurements to assess adrenocortical activity in primate (and many nonprimate) species applied a specific cortisol or corticosterone assay. However, since these native glucocorticoids are virtually absent in the feces of most vertebrates, including primates, the validity of this approach has recently been questioned. Therefore, the overall aim of the present study was to assess the validity of four enzyme-immunoassays (EIAs) using antibodies raised against cortisol, corticosterone, and reduced cortisol metabolites (two group-specific antibodies) for assessing adrenocortical activity using fecal glucocorticoid metabolite (GCM) measurements in selected primate species (marmoset, long-tailed macaque, Barbary macaque, chimpanzee, and gorilla). Using physiological stimulation of the hypothalamo-pituitary-adrenocortical (HPA) axis by administering exogenous ACTH or anesthesia, we demonstrated that at least two assays detected the predicted increase in fecal GCM levels in response to treatment in each species. However, the magnitude of response varied between assays and species, and no one assay was applicable to all species. While the corticosterone assay generally was of only limited suitability for assessing glucocorticoid output, the specific cortisol assay was valuable for those species that (according to high-performance liquid chromatography (HPLC) analysis data) excreted clearly detectable amounts of authentic cortisol into the feces. In contrast, in species in which cortisol was virtually absent in the feces, group-specific assays provided a much stronger signal, and these assays also performed well in the other primate species tested (except the marmoset). Collectively, the data suggest that the reliability of a given fecal glucocorticoid assay in reflecting activity of the HPA axis in primates clearly depends on the species in question. Although to date there is no single assay system that can be used successfully across species, our data suggest that group-specific assays have a high potential for cross-species application. Nevertheless, regardless of which GC antibody is chosen, our study clearly reinforces the necessity of appropriately validating the respective assay system before it is used.
|
|
|
Hinde, R. A. (1969). Analyzing the roles of the partners in a behavioral interaction--mother-infant relations in rhesus macaques. Ann N Y Acad Sci, 159(3), 651–667.
|
|
|
Hrdy, S. B. (1974). Male-male competition and infanticide among the langurs (Presbytis entellus) of Abu, Rajasthan. Folia Primatol (Basel), 22(1), 19–58.
|
|