|
Barton, M. D., & Hughes, K. L. (1984). Ecology of Rhodococcus equi. Vet Microbiol, 9(1), 65–76.
Abstract: A selective broth enrichment technique was used to study the distribution of Rhodococcus equi in soil and grazing animals. Rhodococcus equi was isolated from 54% of soils examined and from the gut contents, rectal faeces and dung of all grazing herbivorous species examined. Rhodococcus equi was not isolated from the faeces or dung of penned animals which did not have access to grazing. The isolation rate from dung was much higher than from other samples and this was found to be due to the ability of R. equi to multiply more readily in dung. Delayed hypersensitivity tests were carried out on horses, sheep and cattle, but only horses reacted significantly. The physiological characteristics of R. equi and the nature of its distribution in the environment suggested that R. equi is a soil organism.
|
|
|
Boray, J. C. (1969). Experimental fascioliasis in Australia. Adv Parasitol, 7, 95–210.
|
|
|
Branchi, I., Bichler, Z., Berger-Sweeney, J., & Ricceri, L. (2003). Animal models of mental retardation: from gene to cognitive function. Neurosci Biobehav Rev, 27(1-2), 141–153.
Abstract: About 2-3% of all children are affected by mental retardation, and genetic conditions rank among the leading causes of mental retardation. Alterations in the information encoded by genes that regulate critical steps of brain development can disrupt the normal course of development, and have profound consequences on mental processes. Genetically modified mouse models have helped to elucidate the contribution of specific gene alterations and gene-environment interactions to the phenotype of several forms of mental retardation. Mouse models of several neurodevelopmental pathologies, such as Down and Rett syndromes and X-linked forms of mental retardation, have been developed. Because behavior is the ultimate output of brain, behavioral phenotyping of these models provides functional information that may not be detectable using molecular, cellular or histological evaluations. In particular, the study of ontogeny of behavior is recommended in mouse models of disorders having a developmental onset. Identifying the role of specific genes in neuropathologies provides a framework in which to understand key stages of human brain development, and provides a target for potential therapeutic intervention.
|
|
|
Callinan, A. P. (1978). The ecology of the free-living stages of Trichostrongylus axei. Int J Parasitol, 8(6), 453–456.
|
|
|
Cameron, E. Z., & du Toit, J. T. (2007). Winning by a neck: tall giraffes avoid competing with shorter browsers. Am Nat, 169(1), 130–135.
Abstract: With their vertically elongated body form, giraffes generally feed above the level of other browsers within the savanna browsing guild, despite having access to foliage at lower levels. They ingest more leaf mass per bite when foraging high in the tree, perhaps because smaller, more selective browsers deplete shoots at lower levels or because trees differentially allocate resources to promote shoot growth in the upper canopy. We erected exclosures around individual Acacia nigrescens trees in the greater Kruger ecosystem, South Africa. After a complete growing season, we found no differences in leaf biomass per shoot across height zones in excluded trees but significant differences in control trees. We conclude that giraffes preferentially browse at high levels in the canopy to avoid competition with smaller browsers. Our findings are analogous with those from studies of grazing guilds and demonstrate that resource partitioning can be driven by competition when smaller foragers displace larger foragers from shared resources. This provides the first experimental support for the classic evolutionary hypothesis that vertical elongation of the giraffe body is an outcome of competition within the browsing ungulate guild.
|
|
|
Chmel, L., Hasilikova, A., Hrasko, J., & Vlacilikova, A. (1972). The influence of some ecological factors on keratinophilic fungi in the soil. Sabouraudia, 10(1), 26–34.
|
|
|
Clutton-Brock, T. H., Russell, A. F., Sharpe, L. L., Brotherton, P. N., McIlrath, G. M., White, S., et al. (2001). Effects of helpers on juvenile development and survival in meerkats. Science, 293(5539), 2446–2449.
Abstract: Although breeding success is known to increase with group size in several cooperative mammals, the mechanisms underlying these relationships are uncertain. We show that in wild groups of cooperative meerkats, Suricata suricatta, reductions in the ratio of helpers to pups depress the daily weight gain and growth of pups and the daily weight gain of helpers. Increases in the daily weight gain of pups are associated with heavier weights at independence and at 1 year of age, as well as with improved foraging success as juveniles and higher survival rates through the first year of life. These results suggest that the effects of helpers on the fitness of pups extend beyond weaning and that helpers may gain direct as well as indirect benefits by feeding pups.
|
|
|
Cowley, J. J., & Griesel, R. D. (1966). The effect on growth and behaviour of rehabilitating first and second generation low protein rats. Anim. Behav., 14(4), 506–517.
|
|
|
Dauphin, G., Zientara, S., Zeller, H., & Murgue, B. (2004). West Nile: worldwide current situation in animals and humans. Comp Immunol Microbiol Infect Dis, 27(5), 343–355.
Abstract: West Nile (WN) virus is a mosquito-borne flavivirus that is native to Africa, Europe, and Western Asia. It mainly circulates among birds, but can infect many species of mammals, as well as amphibians and reptiles. Epidemics can occur in rural as well as urban areas. Transmission of WN virus, sometimes involving significant mortality in humans and horses, has been documented at erratic intervals in many countries, but never in the New World until it appeared in New York City in 1999. During the next four summers it spread with incredible speed to large portions of 46 US states, and to Canada, Mexico, Central America and the Caribbean. In many respects, WN virus is an outstanding example of a zoonotic pathogen that has leaped geographical barriers and can cause severe disease in human and equine. In Europe, in the past two decades there have been a number of significant outbreaks in several countries. However, very little is known of the ecology and natural history of WN virus transmission in Europe and most WN outbreaks in humans and animals remain unpredictable and difficult to control.
|
|
|
De Stoppelaire, G. H., Gillespie, T. W., Brock, J. C., & Tobin, G. A. (2004). Use of remote sensing techniques to determine the effects of grazing on vegetation cover and dune elevation at Assateague Island National Seashore: impact of horses. Environ Manage, 34(5), 642–649.
Abstract: The effects of grazing by feral horses on vegetation and dune topography at Assateague Island National Seashore were investigated using color-infrared imagery, lidar surveys, and field measurements. Five pairs of fenced and unfenced plots (300 m2) established in 1993 on sand flats and small dunes with similar elevation, topography, and vegetation cover were used for this study. Color-infrared imagery from 1998 and field measurements from 2001 indicated that there was a significant difference in vegetation cover between the fenced and unfenced plot-pairs over the study period. Fenced plots contained a higher percentage of vegetation cover that was dominated by American beachgrass (Ammophila breviligulata). Lidar surveys from 1997, 1999, and 2000 showed that there were significant differences in elevation and topography between fenced and unfenced plot-pairs. Fenced plots were, on average, 0.63 m higher than unfenced plots, whereas unfenced plots had generally decreased in elevation after establishment in 1993. Results demonstrate that feral horse grazing has had a significant impact on dune formation and has contributed to the erosion of dunes at Assateague Island. The findings suggest that unless the size of the feral horse population is reduced, grazing will continue to foster unnaturally high rates of dune erosion into the future. In order to maintain the natural processes that historically occurred on barrier islands, much larger fenced exclosures would be required to prevent horse grazing.
|
|