|
Bell, F. R. (1972). Sleep in the larger domesticated animals. Proc R Soc Med, 65(2), 176–177.
|
|
|
Dorzh, C., & Minar, J. (1971). Warble flies of the families Oestridae and Gasterophilidae (Diptera) found in the Mongolian People's Republic. Folia Parasitol (Praha), 18(2), 161–164.
|
|
|
Escos, J., Alados, C. L., & Boza, J. (1993). Leadership in a domestic goat herd. Appl. Anim. Behav. Sci., 38(1), 41–47.
Abstract: This study reports on leadership behavior in a domestic goat group (370 animals) moving from night-time areas to grazing areas. Of the adult females which occupied leadership positons, all of them were born in the study area. Also, they were individuals with more relatives alive in the group (according to matrilineal kinship) than the rest, but they did not show special physical characteristics.
|
|
|
Foster, T. M., Matthews, L. R., Temple, W., & Poling, A. (1997). Concurrent schedule performance in domestic goats: persistent undermatching. Behav. Process., 40(3), 231–237.
Abstract: Performance of nine domestic goats responding under concurrent variable-interval variable-interval schedules of food delivery was examined, with results analyzed in terms of the generalized matching equation. Substantial undermatching of response and time allocation ratios to obtained reinforcement ratios was evident. Post-reinforcement pause time ratios approximately matched obtained reinforcement ratios. Subtracting these times from total time allocation values yielded net time allocation ratios, which undermatched obtained reinforcement ratios to a greater degree than whole-session time allocation ratios. Slopes of regression lines relating behavioral outputs to environmental inputs characteristically were below 0.6, which is similar to previous findings in dairy cows tested under comparable conditions.
|
|
|
Hoogstraal, H., & Mitchell, R. M. (1971). Haemaphysalis (Alloceraea) aponommoides Warburton (Ixodoidea: Ixodidae), description of immature stages, hosts, distribution, and ecology in India, Nepal, Sikkim, and China. J Parasitol, 57(3), 635–645.
|
|
|
Hoogstraal, H., Dhanda, V., & Bhat, H. R. (1970). Haemaphysalis (Kaiseriana) davisi sp. n. (Ixodoidea: Ixodidae), a parasite of domestic and wild mammals in Northeastern India, Sikkim, and Burma. J Parasitol, 56(3), 588–595.
|
|
|
Houpt, K. A. (1976). Animal behavior as a subject for veterinary students. Cornell Vet, 66(1), 73–81.
Abstract: Knowledge of animal behavior is an important asset for the veterinarian; therefore a course in veterinary animal behavior is offered at the New York State College of Veterinary Medicine as an elective. The course emphasizes the behavior of those species of most interest to the practicing veterinarian: cats, dogs, horses, cows, pigs and sheep. Dominance heirarchies, animal communication, aggressive behavior, sexual behavior and maternal behavior are discussed. Play, learning, diurnal cycles of activity and sleep, and controls of ingestive behavior are also considered. Exotic and zoo animal behaviors are also presented by experts in these fields. The critical periods of canine development are related to the optimum management of puppies. The behavior of feral dogs and horses is described. The role of the veterinarian in preventing cruelty to animals and recognition of pain in animals is emphasized. Whenever possible behavior is observed in the laboratory or on film.
|
|
|
Iwuala, M. O., & Okpala, I. (1978). Studies on the ectoparasitic fauna of Nigerian livestock I: Types and distribution patterns on hosts'. Bull Anim Health Prod Afr, 26(4), 339–350.
|
|
|
Iwuala, M. O., & Okpala, I. (1978). Studies on the ectoparasitic fauna of Nigerian livestock II: Seasonal infestation rates. Bull Anim Health Prod Afr, 26(4), 351–359.
|
|
|
Kaminski, J., Call, J., & Tomasello, M. (2006). Goats' behaviour in a competitive food paradigm: Evidence for perspective taking? Behaviour, 143, 1341–1356.
Abstract: Many mammalian species are highly social, creating intra-group competition for such things as food and mates. Recent research with nonhuman primates indicates that in competitive situations individuals know what other individuals can and cannot see, and they use this knowledge to their advantage in various ways. In the current study, we extended these findings to a non-primate species, the domestic goat, using the conspecific competition paradigm developed by Hare et al. (2000). Like chimpanzees and some other nonhuman primates, goats live in fission-fusion societies, form coalitions and alliances, and are known to reconcile after fights. In the current study, a dominant and a subordinate individual competed for food, but in some cases the subordinate could see things that the dominant could not. In the condition where dominants could only see one piece of food but subordinates could see both, subordinates' preferences depended on whether they received aggression from the dominant animal during the experiment. Subjects who received aggression preferred the hidden over the visible piece of food, whereas subjects who never received aggression significantly preferred the visible piece. By using this strategy, goats who had not received aggression got significantly more food than the other goats. Such complex social interactions may be supported by cognitive mechanisms similar to those of chimpanzees. We discuss these results in the context of current issues in mammalian cognition and socio-ecology.
|
|