|
Boucher, J. M., Hanosset, R., Augot, D., Bart, J. M., Morand, M., Piarroux, R., et al. (2005). Detection of Echinococcus multilocularis in wild boars in France using PCR techniques against larval form. Vet Parasitol, 129(3-4), 259–266.
Abstract: Recently, new data have been collected on the distribution and ecology of Echinococcus multilocularis in European countries. Different ungulates species such as pig, goat, sheep, cattle and horse are known to host incomplete development of larval E. multilocularis. We report a case of E. multilocularis portage in two wild boars from a high endemic area in France (Department of Jura). Histological examination was performed and the DNA was isolated from hepatic lesions then amplified by using three PCR methods in two distinct institutes. Molecular characterisation of PCR products revealed 99% nucleotide sequence homology with the specific sequence of the U1 sn RNA gene of E. multilocularis, 99 and 99.9% nucleotide sequence homology with the specific sequence of the cytochrome oxydase gene of Echinococcus genus and 99.9% nucleotide sequence homology with a genomic DNA sequence of Echinococcus genus for the first and the second wild boar, respectively.
|
|
|
Bouchet, A. (2006). [Anatomy lessons on animals]. Hist Sci Med, 40(4), 331–338.
Abstract: The first anatomical studies were realized on the animal by Galen and Vesalius. Bourgelat created the first veterinarian school in Lyons, then in Paris where the famous dissection of a man on his horse can be seen (Fragonard). The Lafosse dynasty was interested in the study of the horse care and the painter Sollier showed the most beautiful coloured engravings about the horses. A chair of anatomy was created to compare the human and animal anatomy by the school of Jardin des Plantes en 1855.
|
|
|
Joubert, L., Oudar, J., Hannoun, C., Beytout, D., Corniou, B., Guillon, J. C., et al. (1970). [Epidemiology of the West Nile virus: study of a focus in Camargue. IV. Meningo-encephalomyelitis of the horse]. Ann Inst Pasteur (Paris), 118(2), 239–247.
|
|
|
McCrory, P., Turner, M., LeMasson, B., Bodere, C., & Allemandou, A. (2006). An analysis of injuries resulting from professional horse racing in France during 1991-2001: a comparison with injuries resulting from professional horse racing in Great Britain during 1992-2001. Br J Sports Med, 40(7), 614–618.
Abstract: BACKGROUND: It has been previously shown that professional jockeys suffer high rates of fatal and non-fatal injuries in the pursuit of their occupation. Little is known, however, about differences in injury rates between countries. AIM: To determine the rate of fatal and non-fatal injuries in flat and jump jockeys in France and to compare the injury rates with those in Great Britain and Ireland Method: Prospectively collected injury data on professional jockeys were used as the basis of the analysis. RESULTS: Limb fractures occur four times more often in both flat and jump racing in France than in Great Britain. Similarly dislocations are diagnosed 20 times more often in flat and three times more often in jump racing. This difference is surprising given that French jockeys have fewer falls per ride than their British counterparts in flat racing, although they do have more falls than the British in jump racing. Similarly concussion rates seem to be higher in French jockeys, although there may be a difference in the diagnostic methods used in the different countries. By contrast, soft tissue injuries account for a far smaller percentage of injuries than in Great Britain. CONCLUSION: There are striking differences in injury rates between countries which may be explained in part by a difference in track conditions-for example, harder tracks in France-or different styles of racing--for example, larger fields of horses per race in France.
|
|
|
Ricard, A., & Chanu, I. (2001). Genetic parameters of eventing horse competition in France. Genet Sel Evol, 33(2), 175–190.
Abstract: Genetic parameters of eventing horse competitions were estimated. About 13 000 horses, 30 000 annual results during 17 years and 110 000 starts in eventing competitions during 8 years were recorded. The measures of performance were logarithmic transformations of annual earnings, annual earnings per start, and annual earnings per place, and underlying variables responsible for ranks in each competition. Heritabilities were low (0.11 / 0.17 for annual results, 0.07 for ranks). Genetic correlations between criteria were high (greater than 0.90) except between ranks and earnings per place (0.58) or per start (0.67). Genetic correlations between ages (from 5 to 10 years old) were also high (more than 0.85) and allow selection on early performances. The genetic correlation between the results in different levels of competition (high/international and low/amateur) was near 1. Genetic correlations of eventing with other disciplines, which included partial aptitude needed for eventing, were very low for steeplechase races (0.18) and moderate with sport: jumping (0.45), dressage (0.58). The results suggest that selection on jumping performance will lead to some positive correlated response for eventing performance, but much more response could be obtained if a specific breeding objective and selection criteria were developed for eventing.
|
|