|
Clayton, H. M. (1994). Comparison of the stride kinematics of the collected, working, medium and extended trot in horses. Equine Vet J, 26(3), 230–234.
Abstract: Highly-trained dressage horses were studied to test the hypothesis that stride length is altered independently of stride duration in the transitions between the collected, working, medium and extended trot. Six well-trained dressage horses were filmed at a frame rate of 150 frames/s performing the collected, working, medium and extended trots in a sand arena. Temporal, linear and angular data were extracted from the films, with 4 strides being analysed for each horse and gait type. There were no significant asymmetries between the left and rights limbs or diagonals when data from the whole group were pooled, but 3 horses showed asymmetries in one or more variables (P < 0.01). Analysis of variance and post-hoc tests indicated that the speed increased significantly (P < 0.01) from the collected (3.20 m/s) to the working (3.61 m/s) to the medium (4.47 m/s) to the extended (4.93 m/s) trot. The increases in speed were associated with a significant increase in stride length from 250 cm in the collected trot, to 273 cm in the working trot, 326 cm in the medium trot and 355 cm in the extended trot (P < 0.01). The lengthening of the stride was a result of increases between each gait type in the over-reach distance, whereas the diagonal distance was significantly longer in the extended than the collected trot only (P < 0.01). The stride duration tended to decrease as speed increased, and the difference became significant between the collected and extended trots (P < 0.01).
|
|
|
Holmstrom, M., Magnusson, L. E., & Philipsson, J. (1990). Variation in conformation of Swedish warmblood horses and conformational characteristics of elite sport horses. Equine Vet J, 22(3), 186–193.
Abstract: The variation in conformation of 356 Swedish Warmblood horses is described, using a quantitative method of measuring horses. Thirty-three of the horses were elite dressage horses, 28 were elite showjumpers, 100 were riding school horses and 195 were unselected four-year-olds. Most horses had a long body form. The average height at the withers was 163.4 cm. Sixty per cent of the horses had a bench knee conformation, 50 per cent had a toe-in conformation of the forelimbs and 80 per cent had outwardly rotated hind limbs. The majority of these deviations were mild or moderate. Conformation was influenced by sex and age. Mares were smaller and had longer bodies and shorter limbs. The elite dressage horses and showjumpers had larger hock angles and more sloping scapulas than other horses. The showjumpers also had smaller fetlock angles in the front limbs. It is suggested that the larger hock angles among the elite horses may be because hocks with small angles are more prone to injury, and because small hock angles may negatively influence the ability to attain the degree of collection necessary for good performance in advanced classes.
|
|
|
McGuigan, M. P., & Wilson, A. M. (2003). The effect of gait and digital flexor muscle activation on limb compliance in the forelimb of the horse Equus caballus. J Exp Biol, 206(Pt 8), 1325–1336.
Abstract: A horse's legs are compressed during the stance phase, storing and then returning elastic strain energy in spring-like muscle-tendon units. The arrangement of the muscle-tendon units around the lever-like joints means that as the leg shortens the muscle-tendon units are stretched. The forelimb anatomy means that the leg can be conceptually divided into two springs: the proximal spring, from the scapula to the elbow, and the distal spring, from the elbow to the foot. In this paper we report the results of a series of experiments testing the hypothesis that there is minimal scope for muscle contraction in either spring to adjust limb compliance. Firstly, we demonstrate that the distal, passive leg spring changes length by 127 mm (range 106-128 mm) at gallop and the proximal spring by 12 mm (9-15 mm). Secondly, we demonstrate that there is a linear relationship between limb force and metacarpo-phalangeal (MCP) joint angle that is minimally influenced by digital flexor muscle activation in vitro or as a function of gait in vivo. Finally, we determined the relationship between MCP joint angle and vertical ground-reaction force at trot and then predicted the forelimb peak vertical ground-reaction force during a 12 m s(-1) gallop on a treadmill. These were 12.79 N kg(-1) body mass (BM) (range 12.07-13.73 N kg(-1) BM) for the lead forelimb and 15.23 N kg(-1) BM (13.51-17.10 N kg(-1) BM) for the non-lead forelimb.
|
|