|
Bobbert, M. F., & Santamaria, S. (2005). Contribution of the forelimbs and hindlimbs of the horse to mechanical energy changes in jumping. J Exp Biol, 208(2), 249–260.
Abstract: The purpose of the present study was to gain more insight into the contribution of the forelimbs and hindlimbs of the horse to energy changes during the push-off for a jump. For this purpose, we collected kinematic data at 240 Hz from 23 5-year-old Warmbloods (average mass: 595 kg) performing free jumps over a 1.15 m high fence. From these data, we calculated the changes in mechanical energy and the changes in limb length and joint angles. The force carried by the forelimbs and the amount of energy stored was estimated from the distance between elbow and hoof, assuming that this part of the leg behaved as a linear spring. During the forelimb push, the total energy first decreased by 3.2 J kg(-1) and then increased again by 4.2 J kg(-1) to the end of the forelimb push. At the end of the forelimb push, the kinetic energy due to horizontal velocity of the centre of mass was 1.6 J kg(-1) less than at the start, while the effective energy (energy contributing to jump height) was 2.3 J kg(-1) greater. It was investigated to what extent these changes could involve passive spring-like behaviour of the forelimbs. The amount of energy stored and re-utilized in the distal tendons during the forelimb push was estimated to be on average 0.4 J kg(-1) in the trailing forelimb and 0.23 J kg(-1) in the leading forelimb. This means that a considerable amount of energy was first dissipated and subsequently regenerated by muscles, with triceps brachii probably being the most important contributor. During the hindlimb push, the muscles of the leg were primarily producing energy. The total increase in energy was 2.5 J kg(-1) and the peak power output amounted to 71 W kg(-1).
|
|
|
Cassiat, G., Pourcelot, P., Tavernier, L., Geiger, D., Denoix, J. M., & Degueurce, D. (2004). Influence of individual competition level on back kinematics of horses jumping a vertical fence. Equine Vet J, 36(8), 748–753.
Abstract: REASONS FOR PERFORMING STUDY: The costs and investments required for the purchase and training of showjumpers justify the need to find selection means for jumping horses. Use of objective kinematic criteria correlated to jumping ability could be helpful for this assessment. OBJECTIVES: To compare back kinematics between 2 groups of horses of different competition levels (Group 1, competing at high level; Group 2 competing at low level) while free jumping over a 1 m vertical fence. METHODS: Three-dimensional recordings were performed using 2 panning cameras. Kinematic parameters of the withers and tuber sacrale (vertical displacement, vertical and horizontal velocities), backline inclination and flexion-extension motion of the 3 main dorsal segments (thoracic, thoracolumbar and lumbosacral) were analysed. RESULTS: Group 2 horses had a lower displacement of their withers and tuber sacrale from the end of the last approach stride until the first departure stride (P<0.05). As a result, they increased the flexion of their thoracolumbar and lumbosacral junctions during the hindlimb swing phase before take-off (P<0.05). However, withers and tuber sacrale velocities were slightly modified. Group 1 horses pitched their backline less forward during the forelimb stance phase before take-off and straightened it more after landing (P<0.05), probably indicating a more efficient strutting action of their forelimbs. CONCLUSIONS AND POTENTIAL RELEVANCE: Because significant differences in back motion were found between good and poor jumpers when jumping a 1 m high fence, criteria based on certain back kinematics can be developed that may help in the selection of talented showjumpers.
|
|
|
Colahan, P., Lindsey, E., & Nunier, C. (1993). Determination of the center of pressure of the hoofs of the forelimbs of horses standing on a flat level surface. Acta Anat (Basel), 146(2-3), 175–178.
Abstract: The pressure exerted on a flat level surface by recently trimmed, unshod hoofs of the front limbs of 23 sound, adult horses was measured using pressure-sensitive film and a specially built cassette. The horses were tranquilized and stood with one foot on the 2.9-cm-thick cassette and the other on a block of equal height. The hoofs were observed for motion during the measurement, and the developed film was examined for improper alignment of the film or slipping of the hoof. The center of pressure was located using the method of weighted proportions of Barrey. This static measurement system with a long measurement time and the number of measurements reduced the influence of variables inherent in the horses' behavior and the measuring system. The calculated point was recorded as falling medial to, lateral to or on a line bisecting the central sulcus of the frog. In the dorsal to palmar orientation the point was classified with reference to a line drawn halfway between the most dorsal and the most palmar mark on the film. Forty-six percent of the calculated centers of pressure were located in the medial heel area. Binomial analysis for large samples indicates that this was a significant variation from a random distribution. Seventy-six percent of the centers were located in or on the borders of the medial heel.
|
|
|
Rollot, Y., Lecuyer, E., Chateau, H., & Crevier-Denoix, N. (2004). Development of a 3D model of the equine distal forelimb and of a GRF shoe for noninvasive determination of in vivo tendon and ligament loads and strains. Equine Vet J, 36(8), 677–682.
Abstract: REASONS FOR PERFORMING STUDY: As critical locomotion events (e.g. high-speed and impacts during racing, jump landing) may contribute to tendinopathies, in vivo recording of gaits kinematic and dynamic parameters is essential for 3D reconstruction and analysis. OBJECTIVE: To propose a 3D model of the forelimb and a ground reaction force recording shoe (GRF-S) for noninvasively quantifying tendon and ligament loads and strains. METHODS: Bony segments trajectories of forelimbs placed under a power press were recorded using triads of ultrasonic kinematic markers linked to the bones. Compression cycles (from 500-6000 N) were applied for different hoof orientations. Locations of tendon and ligament insertions were recorded with regard to the triads. The GRF-S recorded GRF over the hoof wall and used four 3-axis force sensors sandwiched between a support shoe and the shoe to be tested. RESULTS: Validation of the model by comparing calculated and measured superficial digital flexor tendon strains, and evaluation of the role of proximal interphalangeal joint in straight sesamoidean ligament and oblique sesamoidean ligament strains, were successfully achieved. Objective comparisons of the 3 components of GRF over the hoof for soft and hard grounds could be recorded, where the s.d. of GRF norm was more important on hard ground at walk and trot. CONCLUSIONS: Soft grounds (sand and rubber) dissipate energy by lowering GRF amplitude and diminish bounces and vibrations at impact. At comparable speed, stance phase was longer on soft sand ground. POTENTIAL RELEVANCE: The conjugate use of the GRF-S and the numerical model would help to quantify and analyse ground/shoe combination on comfort, propulsion efficiency or lameness recovery.
|
|
|
Spadavecchia, C., Arendt-Nielsen, L., Andersen, O. K., Spadavecchia, L., Doherr, M., & Schatzmann, U. (2003). Comparison of nociceptive withdrawal reflexes and recruitment curves between the forelimbs and hind limbs in conscious horses. Am J Vet Res, 64(6), 700–707.
Abstract: OBJECTIVE: To compare nociceptive withdrawal reflexes (NWRs) evoked from the distal aspect of the left forelimb and hind limb in conscious standing horses and to investigate NWR recruitment for graded electrical stimulation intensities. ANIMALS: 20 adult horses. PROCEDURE: Surface electromyographic (EMG) activity evoked by transcutaneous electrical stimulation of the digital palmar (or plantar) nerve was recorded from the common digital extensor and cranial tibial muscles. Stimuli consisted of 25-millisecond train-of-5 constant current pulses. Current intensity was gradually increased until NWR threshold intensity was reached. The EMG signal was analyzed for quantification of the NWR. Behavioral responses accompanying the reflex were scored (scale, 0 to 5). The NWR recruitment curves were determined at 0.9, 1.1, 1.2, and 1.3 times the NWR threshold intensity. RESULTS: The NWR threshold was significantly higher for the hind limb (median value, 6.6 mA; range, 3 to 10 mA) than the forelimb (median, 3 mA; range, 1.7 to 5.5 mA). The NWR of the hind limb had a significantly longer latency (median, 122.8 milliseconds; range, 106 to 172 milliseconds), compared with the forelimb (median, 98 milliseconds; range, 86 to 137 milliseconds), and it was associated with significantly stronger behavioral reactions. Gradual increase of NWR amplitude was evident at increasing stimulation intensities and supported by the behavioral observations. CONCLUSIONS AND CLINICAL RELEVANCE: We documented NWRs evoked from the forelimb and hind limb and their recruitment with stimuli of increasing intensity in horses. These results provide a basis for use of NWRs in studies on nociceptive modulation in horses.
|
|