|
Zucca, P., Baciadonna, L., Masci, S., & Mariscoli, M. (2010). Illness as a source of variation of laterality in lions (Panthera leo). Laterality, 16(3), 356–366.
Abstract: Brain asymmetry—i.e. the specialisation of each cerebral hemisphere for sensorimotor processing mechanisms and for specific cognitive functions—is widely distributed among vertebrates. Several factors, such as embryological manipulations, sex, age, and breeds, can influence the maintenance, strength, and direction of laterality within a certain vertebrate species. Brain lateralisation is a universal phenomenon characterising not only cerebral control of cognitive or emotion-related functions but also cerebral regulation of somatic processes, and its evolution is strongly influenced by social selection pressure. Diseases are well known to be a cost of sociality but their role in influencing behaviour has received very little attention. The present study investigates the influence of illness conditions as a source of variation on laterality in a social keystone vertebrate predator model, the lion. In a preliminary stage, the clinical conditions of 24 adult lions were assessed. The same animals were scored for forelimb preference when in the quadrupedal standing position. Lions show a marked forelimb preference with a population bias towards the use of the right forelimb. Illness conditions strongly influenced the strength of laterality bias, with a significant difference between clinically healthy and sick lions. According to these results, health conditions should be recognised as an important source of variation in brain lateralisation.
|
|
|
Zucca, P., Cerri, F., Carluccio, A., & Baciadonna, L. (). Space availability influence laterality in donkeys (Equus asinus). Behav. Process., In Press, Uncorrected Proof.
Abstract: Cerebral lateralization is the portioning of the cognitive functions between the two cerebral hemispheres. Several factors, like embryological manipulations, light exposure, health conditions, sex and age can influence the left-right brain asymmetries and contribute to increasing the variability in the strength and direction of laterality within most species. We investigated the influence of an environmental constraint, namely space availability, as a new source of variation on laterality in an adult vertebrate model, the donkey. In a baseline condition we tested whether donkeys show a motor lateralization bias at population level, while in an experimental condition we manipulated space availability to verify if a reduction in this parameter could represent a new source of variation in laterality. Results show that donkeys are lateralized at population level with a strong bias to standing with the right forelimb advanced over the left and that a reduction of space availability is an important source of variation in the laterality strength and direction within this species. The comparative analysis of the environmental and developmental factors that give origin to neural and behavioural laterality in animal models will be very important for a better understanding of the evolutionary origin of such multifaceted phenomenon.
|
|