|
Beerwerth, W., & Schurmann, J. (1969). [Contribution to the ecology of mycobacteria]. Zentralbl Bakteriol [Orig], 211(1), 58–69.
|
|
|
Beran, M. J., Beran, M. M., Harris, E. H., & Washburn, D. A. (2005). Ordinal judgments and summation of nonvisible sets of food items by two chimpanzees and a rhesus macaque. J Exp Psychol Anim Behav Process, 31(3), 351–362.
Abstract: Two chimpanzees and a rhesus macaque rapidly learned the ordinal relations between 5 colors of containers (plastic eggs) when all containers of a given color contained a specific number of identical food items. All 3 animals also performed at high levels when comparing sets of containers with sets of visible food items. This indicates that the animals learned the approximate quantity of food items in containers of a given color. However, all animals failed in a summation task, in which a single container was compared with a set of 2 containers of a lesser individual quantity but a greater combined quantity. This difficulty was not overcome by sequential presentation of containers into opaque receptacles, but performance improved if the quantitative difference between sizes was very large.
|
|
|
Bouchard, J. (2002). Is social learning correlated with innovation in birds? An inter-and an interspecific test. Master's thesis, Department of Biology McGili University Montréal, Québec, .
Abstract: This thesis focuses on the relationship between innovation and social learning in the foraging context, across and within bird species, using two different sources of data: anecdotal reports from the literature, and experimental tests in the laboratory and the field. In chapter 1, I review the trends in innovation and social learning in the avian literature, and contrast them with trends in mammals, especially primates. In chapter 2, I use anecdotal reports of feeding innovation and social learning in the literature to assess taxonomic trends and to study the relationship between the two traits at the interspecific level. In chapter 3, I investigate the relationship between innovation and social learning at the intraspecific level in captive feral pigeons (Columba livia). Innovation is estimated from the ability to solve an innovative foraging problem, and social learning is measured as the number of trials required to learn a foraging task from a proficient demonstrator. (Abstract shortened by UMI.)
|
|
|
Brauer, J., Kaminski, J., Riedel, J., Call, J., & Tomasello, M. (2006). Making inferences about the location of hidden food: social dog, causal ape. J Comp Psychol, 120(1), 38–47.
Abstract: Domestic dogs (Canis familiaris) and great apes from the genus Pan were tested on a series of object choice tasks. In each task, the location of hidden food was indicated for subjects by some kind of communicative, behavioral, or physical cue. On the basis of differences in the ecologies of these 2 genera, as well as on previous research, the authors hypothesized that dogs should be especially skillful in using human communicative cues such as the pointing gesture, whereas apes should be especially skillful in using physical, causal cues such as food in a cup making noise when it is shaken. The overall pattern of performance by the 2 genera strongly supported this social-dog, causal-ape hypothesis. This result is discussed in terms of apes' adaptations for complex, extractive foraging and dogs' adaptations, during the domestication process, for cooperative communication with humans.
|
|
|
Brinkmann, L., Gerken, M., & Riek, A. (2015). Energetic adaptations of Shetland pony mares. In Proceedings of the 3. International Equine Science Meeting.
Abstract: Recent results suggest that wild Northern herbivores exhibit signs of a hypometabolism during times of low ambient temperature and food shortage in order to reduce their energetic needs. However, there are speculations that domestic animals lost the ability to reduce energy expenditure. To examine energetic and behavioural responses 10 Shetland pony mares were exposed to different environmental conditions (summer and winter). During winter ponies were allocated into two groups receiving two different food quantities (60% and 100% of maintenance energy requirement). We measured the field metabolic rate, water turn over, body temperature, locomotor activity, lying time, resting heart rate, body mass and body condition score.
In summer, the field metabolic rate of all ponies (FMR; 63.4±15.0 MJ/day) was considerably higher compared with food restricted and control animals in winter (24.6±7.8 and 15.0±1.1 MJ/day, respectively). Furthermore, during summer, locomotor activity, resting heart rate and total water turnover were significantly elevated (P<0.001) compared with winter. Animals receiving a reduced amount of food (N=5) reduced their FMR by 26% compared with control animals (N=5) to compensate for the decreased energy supply. Furthermore, resting heart rate, body mass and body condition score were lower(29.2±2.7 beats/min, 140±22 kg and 3.0±1.0 points, respectively) than in control animals (36.8±41 beats/min, 165±31 kg, 4.4±0.7 points; P<0.05). While no difference could be found in the observed behaviour, nocturnal hypothermia was elevated in restrictively fed animals. Our results indicate that ponies adapt to different climatic conditions by changing their metabolic rate, behaviour and some physiological parameters. When exposed to energy shortage, ponies, like wild herbivores, exhibited hypometabolism and nocturnal hypothermia.
Keywords:
Body temperature, Energy expenditure, Food restriction, Hypometabolism, Locomotor activity, Shetland pony
|
|
|
Brosnan, S. F., & de Waal, F. B. M. (2004). A concept of value during experimental exchange in brown capuchin monkeys, Cebus apella. Folia Primatol (Basel), 75(5), 317–330.
Abstract: We evaluated the response of brown capuchin monkeys to two differentially valued tokens in an experimental exchange situation akin to a simple barter. Monkeys were given a series of three tests to evaluate their ability to associate tokens with food, then their responses were examined in a barter situation in which tokens were either limited or unlimited. Capuchins did not perform barter in the typical sense, returning the tokens which were associated with the reward. However, females, but not males, showed a different response, preferring the higher-value token. This may indicate that they learned to prefer one token over the other rather than to associate the tokens with their specific rewards. This sex difference parallels previous findings of greater reciprocity in female brown capuchins than in males.
|
|
|
Brosnan, S. F., Freeman, C., & De Waal, F. B. M. (2006). Partner's behavior, not reward distribution, determines success in an unequal cooperative task in capuchin monkeys. Am. J. Primatol., 68(7), 713–724.
Abstract: It was recently demonstrated that capuchin monkeys notice and respond to distributional inequity, a trait that has been proposed to support the evolution of cooperation in the human species. However, it is unknown how capuchins react to inequitable rewards in an unrestricted cooperative paradigm in which they may freely choose both whether to participate and, within the bounds of their partner's behavior, which reward they will receive for their participation. We tested capuchin monkeys with such a design, using a cooperative barpull, which has been used with great success in the past. Contrary to our expectations, the equity of the reward distribution did not affect success or pulling behavior. However, the behavior of the partner in an unequal situation did affect overall success rates: pairs that had a tendency to alternate which individual received the higher-value food in unequal reward situations were more than twice as successful in obtaining rewards than pairs in which one individual dominated the higher-value food. This ability to equitably distribute rewards in inherently biased cooperative situations has profound implications for activities such as group hunts, in which multiple individuals work together for a single, monopolizable reward.
|
|
|
Bräuer, J., Call, J., & Tomasello, M. (2008). Chimpanzees do not take into account what others can hear in a competitive situation. Anim. Cogn., 11(1), 1435–9448.
Abstract: Chimpanzees (Pan troglodytes) know what others can and cannot see in a competitive situation. Does this reflect a general understanding the perceptions of others` In a study by Hare et al. (2000) pairs of chimpanzees competed over two pieces of food. Subordinate individuals preferred to approach food that was behind a barrier that the dominant could not see, suggesting that chimpanzees can take the visual perspective of others. We extended this paradigm to the auditory modality to investigate whether chimpanzees are sensitive to whether a competitor can hear food rewards being hidden. Results suggested that the chimpanzees did not take what the competitor had heard into account, despite being able to locate the hiding place themselves by the noise.
|
|
|
Caldwell, C. A., & Whiten, A. (2004). Testing for social learning and imitation in common marmosets, Callithrix jacchus, using an artificial fruit. Anim. Cogn., 7(2), 77–85.
Abstract: We tested for social learning and imitation in common marmosets using an artificial foraging task and trained conspecific demonstrators. We trained a demonstrator marmoset to open an artificial fruit, providing a full demonstration of the task to be learned. Another marmoset provided a partial demonstration, controlling for stimulus enhancement effects, by eating food from the outside of the apparatus. We thus compared three observer groups, each consisting of four animals: those that received the full demonstration, those that received the partial demonstration, and a control group that saw no demonstration prior to testing. Although none of the observer marmosets succeeded in opening the artificial fruit during the test periods, there were clear effects of demonstration type. Those that saw the full demonstration manipulated the apparatus more overall, whereas those from the control group manipulated it the least of the three groups. Those from the full-demonstration group also contacted the particular parts of the artificial fruit that they had seen touched (localised stimulus enhancement) to a greater extent than the other two groups. There was also an interaction between the number of hand and mouth touches made to the artificial fruit for the full- and partial-demonstration groups. Whether or not these data represent evidence for imitation is discussed. We also propose that the clear differences between the groups suggest that social learning mechanisms provide real benefits to these animals in terms of developing novel food-processing skills analogous to the one presented here.
|
|
|
Clarke, J. V., Nicol, C. J., Jones, R., & McGreevy, P. D. (1996). Effects of observational learning on food selection in horses. Appl. Anim. Behav. Sci., 50(2), 177–184.
Abstract: Fourteen riding horses of mixed age and breed were randomly allocated to observer and control treatments. An additional horse was pre-trained as a demonstrator to walk the 13.8 m length of the test arena and select one of two food buckets using colour and pattern cues. Observer horses were exposed to correct performances of the task by the trained demonstrator, for 20 trials held over 2 days. Control horses were subjected to the same handling and placement procedures as the observer horses but without exposure to the behaviour of the demonstrator. The third day for all subjects was designated as a test day. Each subject was released individually in a predetermined place in the arena, and the latency to walk the length of the test arena to the food buckets, the latency to feed, the identity of the bucket approached and the identity of the bucket selected were recorded on ten consecutive trials. During tests both food buckets contained food to minimize the possibility of individual trial and error learning. On the first trial the mean latency to approach the goal area was 18 s for observer horses, compared with 119 s for control horses (t = 2.8, d.f. = 12, P < 0.01) and the mean latency to eat was 35 s for observer horses, compared with 181 s for control horses (t = 4.86, d.f. = 11, P < 0.001). However, observer horses were no more likely to choose the demonstrated bucket than control horses on the first trial. Twelve of the 14 horses decreased their latency to approach the goal area during the series of ten trials, but there were no significant changes in the buckets selected.
|
|