|
Boden, L. A., Anderson, G. A., Charles, J. A., Morgan, K. L., Morton, J. M., Parkin, T. D. H., et al. (2006). Risk of fatality and causes of death of Thoroughbred horses associated with racing in Victoria, Australia: 1989-2004. Equine Vet J, 38(4), 312–318.
Abstract: REASONS FOR PERFORMING STUDY: Determining the risk of fatality of Thoroughbred horses while racing is essential to assess the impact of intervention measures designed to minimise such fatalities. OBJECTIVES: To measure the risk of racehorse fatality in jump and flat starts on racecourses in Victoria, Australia, over a 15 year period and to determine proportional mortality rates for specific causes of death. METHODS: All fatalities of Thoroughbred horses that occurred during or within 24 h of a race were identified from a database. The risk of a start resulting in a racehorse fatality in all races and within flat and jump races, proportional mortality rates, population attributable risk, population attributable fraction and risk ratios were calculated along with 95% confidence intervals. Poisson regression was also performed to estimate risk ratios. RESULTS: There were 514 fatalities over the 15 year period; 316 in flat races and 198 in jump races. The risk of fatality was 0.44 per 1000 flat starts and 8.3 per 1000 jump starts (18.9 x greater). The risk of fatality on city tracks was 1.1 per 1000 starts whereas on country tracks it was 0.57 per 1000 starts. Of the 316 fatalities in flat races, 73.4% were due to limb injury, 2.5% to cranial or vertebral injury and 19.0% were sudden deaths. Of the 198 fatalities in jump races, 68.7% were due to limb injury, 16.2% to cranial or vertebral injury and 3.5% were sudden deaths. The risk of fatality in flat starts increased between 1989 and 2004 but the risk in jump starts remained unchanged over the 15 year period. CONCLUSIONS: The risk of fatality in flat starts was lower in Victoria than North America and the UK but the risk in jump starts was greater. Catastrophic limb injury was the major reason for racehorse fatality in Victoria but there was a larger percentage of sudden deaths than has been reported overseas. The risk of fatality in jump starts remained constant over the study period despite jump racing reviews that recommended changes to hurdle and steeple races to improve safety. POTENTIAL RELEVANCE: This study provides important benchmarks for the racing industry to monitor racetrack fatalities and evaluate intervention strategies.
|
|
|
Ionita, J. C., Poncet, P. A., Doherr, M. G., & Steiger, A. (2006). [Evaluation of the quality of husbandry of Franches-Montagnes horses in their breeding farms]. Schweiz Arch Tierheilkd, 148(4), 191–197.
Abstract: The quality of husbandry of Franches-Montagnes horses (FM) in Switzerland is evaluated on the basis of an investigation carried out in 2002 by the Swiss FM breeding federation. Questionnaires were sent to 3500 of its members and the results include data from 968 breeding enterprises, housing a total of 3965 FM: 46.1% were breeding mares (61.0% with foal at foot), 26.5% young stock, 1.3% stallions and 26.0% non breeding stock (74.6% of which were pleasure horses and 25.4% working horses). 57.6% of the FM were housed in individual boxes with or without permanent outdoor access, 25.4% were hold in groups with or without permanent outdoor access, the remaining 17.0% were kept in standing stalls. 95.0% of the FM had at least visual contact with other equines and 99.2% had sufficient light in their stable. 88.1% were stabled on long stalk straw, while only 4.3% were bedded on other materials other than straw. The average time spent at pasture per horse and per week ranged from 96.5 +/- 51.6 hours in summer to 27.2 +/- 26.7 hours in winter. On average, a FM is used for 8.3 +/- 6.5 hours per week. Horses with an paddock at their disposal spend an average of 39.8 +/- 45.9 hours there per week.
|
|
|
Rollot, Y., Lecuyer, E., Chateau, H., & Crevier-Denoix, N. (2004). Development of a 3D model of the equine distal forelimb and of a GRF shoe for noninvasive determination of in vivo tendon and ligament loads and strains. Equine Vet J, 36(8), 677–682.
Abstract: REASONS FOR PERFORMING STUDY: As critical locomotion events (e.g. high-speed and impacts during racing, jump landing) may contribute to tendinopathies, in vivo recording of gaits kinematic and dynamic parameters is essential for 3D reconstruction and analysis. OBJECTIVE: To propose a 3D model of the forelimb and a ground reaction force recording shoe (GRF-S) for noninvasively quantifying tendon and ligament loads and strains. METHODS: Bony segments trajectories of forelimbs placed under a power press were recorded using triads of ultrasonic kinematic markers linked to the bones. Compression cycles (from 500-6000 N) were applied for different hoof orientations. Locations of tendon and ligament insertions were recorded with regard to the triads. The GRF-S recorded GRF over the hoof wall and used four 3-axis force sensors sandwiched between a support shoe and the shoe to be tested. RESULTS: Validation of the model by comparing calculated and measured superficial digital flexor tendon strains, and evaluation of the role of proximal interphalangeal joint in straight sesamoidean ligament and oblique sesamoidean ligament strains, were successfully achieved. Objective comparisons of the 3 components of GRF over the hoof for soft and hard grounds could be recorded, where the s.d. of GRF norm was more important on hard ground at walk and trot. CONCLUSIONS: Soft grounds (sand and rubber) dissipate energy by lowering GRF amplitude and diminish bounces and vibrations at impact. At comparable speed, stance phase was longer on soft sand ground. POTENTIAL RELEVANCE: The conjugate use of the GRF-S and the numerical model would help to quantify and analyse ground/shoe combination on comfort, propulsion efficiency or lameness recovery.
|
|