|
Biro, D., Sumpter, D. J. T., Meade, J., & Guilford, T. (2006). From Compromise to Leadership in Pigeon Homing. Curr Biol, 16(21), 2123–2128.
Abstract: Summary A central problem faced by animals traveling in groups is how navigational decisions by group members are integrated, especially when members cannot assess which individuals are best informed or have conflicting information or interests , , , and . Pigeons are now known to recapitulate faithfully their individually distinct habitual routes home , and , and this provides a novel paradigm for investigating collective decisions during flight under varying levels of interindividual conflict. Using high-precision GPS tracking of pairs of pigeons, we found that if conflict between two birds' directional preferences was small, individuals averaged their routes, whereas if conflict rose over a critical threshold, either the pair split or one of the birds became the leader. Modeling such paired decision-making showed that both outcomes--compromise and leadership--could emerge from the same set of simple behavioral rules. Pairs also navigated more efficiently than did the individuals of which they were composed, even though leadership was not necessarily assumed by the more efficient bird. In the context of mass migration of birds and other animals, our results imply that simple self-organizing rules can produce behaviors that improve accuracy in decision-making and thus benefit individuals traveling in groups , and .
|
|
|
Enileeva, N. K. (1987). [Ecological characteristics of horse stomach botflies in Uzbekistan]. Parazitologiia, 21(4), 577–579.
Abstract: The paper describes the flight periods and dynamics of abundance of horse botflies, life span of females and males, effect of environmental factors on the activity of flies and their behaviour, potential fecundity of different species of botflies, duration of embryonal development, preservation of viability of larvae in egg membranes, localization of different stages of botflies in the host, and methods of their control.
|
|
|
Naug, D., & Arathi, H. S. (2007). Sampling and decision rules used by honey bees in a foraging arena. Anim. Cogn., 10(2), 117–124.
Abstract: Animals must continuously choose among various available options to exploit the most profitable resource. They also need to keep themselves updated about the values of all available options, since their relative values can change quickly due to depletion or exploitation by competitors. While the sampling and decision rules by which foragers profitably exploit a flower patch have attracted a great deal of attention in theory and experiments with bumble bees, similar rules for honey bee foragers, which face similar foraging challenges, are not as well studied. By presenting foragers of the honey bee Apis cerana with choice tests in a foraging arena and recording their behavior, we investigate possible sampling and decision rules that the foragers use to choose one option over another and to track other options. We show that a large part of the sampling and decision-making process of a foraging honey bee can be explained by decomposing the choice behavior into dichotomous decision points and incorporating the cost of sampling. The results suggest that a honey bee forager, by using a few simple rules as part of a Bayesian inference process, is able to effectively deal with the complex task of successfully exploiting foraging patches that consist of dynamic and multiple options.
|
|
|
Wagner, G. (1975). [Flight leadership in flocks of homing pigeons]. Z. Tierpsychol., (39), 61–74.
Abstract: Groups of 3-5 homing pigeons individually recognizable by different colours of their plumage were followed by helicopter on their way home. In most cases the animals flew together as a group with frequently changing leadership. Flight formations in terms of leadership were noted every minute. It was examined statistically whether the flight order varies at random or whether there are leading and led birds. In 6 out of 7 experiments with groups of 4-5 pigeons flight order was far from random, one or two pigeons proving to be leaders. In only one experiment leadership did not differ from a random distribution. No correlation could be found between the tendency to lead within a group and homing performance of the single pigeon when released individually.
|
|