|
Acuna, B. D., Sanes, J. N., & Donoghue, J. P. (2002). Cognitive mechanisms of transitive inference. Exp Brain Res, 146(1), 1–10.
Abstract: We examined how the brain organizes interrelated facts during learning and how the facts are subsequently manipulated in a transitive inference (TI) paradigm (e.g., if A<B and B<C, then A<C). This task determined features such as learned facts and behavioral goals, but the learned facts could be organized in any of several ways. For example, if one learns a list by operating on paired items, the pairs may be stored individually as separate facts and reaction time (RT) should decrease with learning. Alternatively, the pairs may be stored as a single, unified list, which may yield a different RT pattern. We characterized RT patterns that occurred as participants learned, by trial and error, the predetermined order of 11 shapes. The task goal was to choose the shape occurring closer to the end of the list, and feedback about correctness was provided during this phase. RT increased even as its variance decreased during learning, suggesting that the learnt knowledge became progressively unified into a single representation, requiring more time to manipulate as participants acquired relational knowledge. After learning, non-adjacent (NA) list items were presented to examine how participants reasoned in a TI task. The task goal also required choosing from each presented pair the item occurring closer to the list end, but without feedback. Participants could solve the TI problems by applying formal logic to the previously learnt pairs of adjacent items; alternatively, they could manipulate a single, unified representation of the list. Shorter RT occurred for NA pairs having more intervening items, supporting the hypothesis that humans employ unified mental representations during TI. The response pattern does not support mental logic solutions of applying inference rules sequentially, which would predict longer RT with more intervening items. We conclude that the brain organizes information in such a way that reflects the relations among the items, even if the facts were learned in an arbitrary order, and that this representation is subsequently used to make inferences.
|
|
|
Adler, L. L., & Adler, H. E. (1977). Ontogeny of observational learning in the dog (Canis familiaris). Dev Psychobiol, 10(3), 267–271.
Abstract: A split-litter technique was used to test observational learning in 4 litters of Miniature Dachshund puppies, 21, 28, 38, and 60 days old at the beginning of the experiment. In one side of a duplicate cage, one puppy of a litter, the demonstrator, learned to pull in a food cart on a runner by means of a ribbon, while another puppy, the observer, watched from an adjacent compartment, separated by a wire screen. Observational learning was demonstrated by the saving in time for the 1st trial when the observer was given the same problem to solve. Maturation, particularly the development of visual function and motor coordination, set a lower age limit for the emergence of observational learning.
|
|
|
Agrillo, C., Dadda, M., & Bisazza, A. (2007). Quantity discrimination in female mosquitofish. Anim. Cogn., 10(1), 63–70.
Abstract: The ability in animals to count and represent different numbers of objects has received a great deal of attention in the past few decades. Cumulative evidence from comparative studies on number discriminations report obvious analogies among human babies, non-human primates and birds and are consistent with the hypothesis of two distinct and widespread mechanisms, one for counting small numbers (<4) precisely, and one for quantifying large numbers approximately. We investigated the ability to discriminate among different numerosities, in a distantly related species, the mosquitofish, by using the spontaneous choice of a gravid female to join large groups of females as protection from a sexually harassing male. In one experiment, we found that females were able to discriminate between two shoals with a 1:2 numerosity ratio (2 vs. 4, 4 vs. 8 and 8 vs. 16 fish) but failed to discriminate a 2:3 ratio (8 vs. 12 fish). In the second experiment, we studied the ability to discriminate between shoals that differed by one element; females were able to select the larger shoal when the paired numbers were 2 vs. 3 or 3 vs. 4 but not 4 vs. 5 or 5 vs. 6. Our study indicates that numerical abilities in fish are comparable with those of other non-verbal creatures studied; results are in agreement with the hypothesis of the existence of two distinct systems for quantity discrimination in vertebrates.
|
|
|
Albentosa, M. J., Kjaer, J. B., & Nicol, C. J. (2003). Strain and age differences in behaviour, fear response and pecking tendency in laying hens. Br Poult Sci, 44(3), 333–344.
Abstract: 1. Behaviours associated with a high or low tendency to feather peck could be used as predictors of feather pecking behaviour in selective breeding programmes. This study investigated how strain and age at testing influenced responses in behavioural tests. 2. Four layer-type strains (ISA Brown, Columbian Blacktail, Ixworth and a high feather pecking (HP) and a low feather pecking (LP) line of White Leghorn) were reared in 6 same-strain/line pens of 8 birds from one day old. Birds in half the pens were given an open field test, a novel object test and a test with loose feather bundles between 4 and 12 weeks of age and a tonic immobility (TI) test at 13 weeks of age. All pens were tested with fixed feather bundles at 26 weeks, and undisturbed behaviour in the home pens was videoed at 1 and 27 weeks of age. Daily records of plumage damage were used as an indicator of feather pecking activity in the home pens. 3. Strain did not influence novel object test, open field test or loose feather test behaviour, although age effects in all three tests indicated a reduction in fearfulness and/or an increase in exploratory behaviour with increasing age. 4. White Leghorns showed longer TI durations than the other strains but less pecking at fixed feather bundles than ISA Browns and Columbian Blacktails. 5. There were few associations between behaviour in the 5 different tests, indicating that birds did not have overall behavioural traits that were consistent across different contexts. This suggests hens cannot easily be categorised into different behavioural 'types', based on their test responses and casts doubt on the usefulness of tests as predictors of feather pecking.
|
|
|
Alexander, F., & Nicholson, J. D. (1968). The blood and saliva clearances of phenobarbitone and pentobarbitone in the horse. Biochem Pharmacol, 17(2), 203–210.
|
|
|
Amdam, G. V., Csondes, A., Fondrk, M. K., & Page, R. E. J. (2006). Complex social behaviour derived from maternal reproductive traits. Nature, 439(7072), 76–78.
Abstract: A fundamental goal of sociobiology is to explain how complex social behaviour evolves, especially in social insects, the exemplars of social living. Although still the subject of much controversy, recent theoretical explanations have focused on the evolutionary origins of worker behaviour (assistance from daughters that remain in the nest and help their mother to reproduce) through expression of maternal care behaviour towards siblings. A key prediction of this evolutionary model is that traits involved in maternal care have been co-opted through heterochronous expression of maternal genes to result in sib-care, the hallmark of highly evolved social life in insects. A coupling of maternal behaviour to reproductive status evolved in solitary insects, and was a ready substrate for the evolution of worker-containing societies. Here we show that division of foraging labour among worker honey bees (Apis mellifera) is linked to the reproductive status of facultatively sterile females. We thereby identify the evolutionary origin of a widely expressed social-insect behavioural syndrome, and provide a direct demonstration of how variation in maternal reproductive traits gives rise to complex social behaviour in non-reproductive helpers.
|
|
|
Anderson, J. R. (1995). Self-recognition in dolphins: credible cetaceans; compromised criteria, controls, and conclusions. Conscious Cogn, 4(2), 239–243.
|
|
|
Anderson, J. R., Kuwahata, H., & Fujita, K. (2007). Gaze alternation during “pointing” by squirrel monkeys (Saimiri sciureus)? Anim. Cogn., 10(2), 267–271.
Abstract: Gaze alternation (GA) is considered a hallmark of pointing in human infants, a sign of intentionality underlying the gesture. GA has occasionally been observed in great apes, and reported only anecdotally in a few monkeys. Three squirrel monkeys that had previously learned to reach toward out-of-reach food in the presence of a human partner were videotaped while the latter visually attended to the food, a distractor object, or the ceiling. Frame-by-frame video analysis revealed that, especially when reaching toward the food, the monkeys rapidly and repeatedly switched between looking at the partner's face and the food. This type of GA suggests that the monkeys were communicating with the partner. However, the monkeys' behavior was not influenced by changes in the partner's focus of attention.
|
|
|
Andrews, F. M., Ralston, S. L., Sommardahl, C. S., Maykuth, P. L., Green, E. M., White, S. L., et al. (1994). Weight, water, and cation losses in horses competing in a three-day event. J Am Vet Med Assoc, 205(5), 721–724.
Abstract: Body weight of 48 horses competing in a 3-day event was measured the day before the event (baseline), following the dressage phase of the event (day 1), after the endurance phases of the event (day 2), and 18 to 24 hours after the endurance phases (day 3). Plasma sodium and potassium concentrations were measured the evening before, immediately after, and 10 minutes after the endurance phases. Total body water, water loss, and net exchangeable cation loss were then calculated. Body weight and total body water were significantly decreased, compared with baseline values, at all times during the event, and significant water loss was detected. The largest changes were recorded after the endurance phases of the event. Water deficits were still detected 18 to 24 hours after the endurance phases of the event. Mean plasma sodium concentration was significantly increased immediately after the endurance phases of the event, compared with concentration measured the evening before, and remained increased after the 10-minute recovery period, presumably because of dehydration. Mean plasma potassium concentration was significantly increased immediately after the endurance phases of the event, compared with concentration measured the evening before, but was not increased after the 10-minute recovery period.
|
|
|
Arnold, K., & Zuberbuhler, K. (2006). Language evolution: semantic combinations in primate calls. Nature, 441(7091), 303.
Abstract: Syntax sets human language apart from other natural communication systems, although its evolutionary origins are obscure. Here we show that free-ranging putty-nosed monkeys combine two vocalizations into different call sequences that are linked to specific external events, such as the presence of a predator and the imminent movement of the group. Our findings indicate that non-human primates can combine calls into higher-order sequences that have a particular meaning.
|
|